
Testing: Managing J2EE Systems with JMX and JUnit Lucas McGregor

Manage new systems as they are developed 12

Feature: Enabling a File System As a A. Garg & S. Mane

Transactional Resource Building an adapter 22

Parameterized Types: Using Java Generics Steve Close

Define a more flexible typed class or parameter 32

Q & A: An Interview with Bruce Eckel Jason Bell

The author of Thinking in Java discusses his work 38

Feature: Life Outside the Sphere Hendrik Schreiber

Building Palm applications with WME 54

Labs:WebLogic JRockit 8.1 Kirk Pepperdine

by BEA Systems – this virtual machine comes with a face 62

JSR Watch: From Within the Java Community Onno Kluyt

Process Program From new JSRs to final APIs 64

From the Inside: Software Development: Henry Roswell

Science or Art? It’s akin to poetry for machines 66

RETAILERS PLEASE DISPLAY
UNTIL JANUARY 31, 2004

From the Editor
Finally a Device That Delivers

Alan Williamson pg. 7

Viewpoint
Test-Driven Development Is

Not About Testing
Dan North pg. 8

J2EE Insight
It Just Works

Joseph Ottinger pg. 10

J2SE Insight
Lift Your Vision Higher!

Jason Bell pg. 30

J2ME Insight
Hanged in a Fortnight?

Glen Cordrey pg. 52

Industry News
pg. 60

www.JavaDevelopersJournal.com

details on pg. 53

International Conference & Expo

Feb. 24–26, 2004
Boston, MA

Edge 2004
EAST
Edge 2004
EAST

WHAT’S THE POINT OF TEST-DRIVEN DEVELOPMENT? pg. 8

Maximized

© 2003 Computer Associates International, Inc. (CA). All rights reserved.

AllFusion™ Life Cycle Management Software

Monitored
The right approach to application life cycle management
can transform your business.

The key to great development isn’t just great developers, it’s great management. That’s why we created AllFusion, a comprehensive

application life cycle management solution. AllFusion has unprecedented flexibility that allows your projects to change along with

the market. And that helps you do something a lot more important than just minimize aggravation. It lets you maximize productivity.

To learn how to improve your development process, or to get a white paper, go to ca.com/lifecycle.

7November 2003www.JavaDevelopersJournal.com

International Advisory Board
CCaallvviinn AAuussttiinn (Sun)

JJaassoonn BBeellll (Independent)
JJaassoonn BBrriiggggss (Independent)

Jeerreemmyy GGeeeellaann (SYS-CON)
TThhoorrsstteenn LLaauuxx (Sun)
RRiicckkaarrdd ÖÖbbeerrgg (Independent)

JJooee OOttttiinnggeerr (Independent)
BBiillll RRootthh (E.piphany)

AAjjiitt SSaaggaarr (Independent)
EErriicc SSttaahhll (BEA)

JJoonn SStteevveennss (Apache)
AAaarroonn WWiilllliiaammss (JCP)

AAllaann WWiilllliiaammssoonn (SYS-CON)
JJooee WWiinncchheesstteerr (IBM)

BBllaaiirr WWyymmaann (IBM)

Editorial
Editor-in-Chief: AAllaann WWiilllliiaammssoonn

Executive Editor: NNaannccyy VVaalleennttiinnee
J2EE Editor: JJooee OOttttiinnggeerr

J2ME Editor: GGlleenn CCoorrddrreeyy
J2SE Editor: JJaassoonn BBeellll

Contributing Editor: JJaassoonn RR.. BBrriiggggss
Contributing Editor: AAjjiitt SSaaggaarr

Founding Editor: SSeeaann RRhhooddyy

Production
Production Consultant: JJiimm MMoorrggaann
Associate Art Director: LLoouuiiss FF.. CCuuffffaarrii

Associate Editors: JJaammiiee MMaattuussooww
GGaaiill SScchhuullttzz
JJeeaann CCaassssiiddyy
JJeennnniiffeerr VVaann WWiinncckkeell

Online Editor: LLiinn GGooeettzz
Technical Editor: BBaahhaaddiirr KKaarruuvv,, PPhhDD

Writers in This Issue
Jason Bell, Steve Close, Glen Cordrey,

Ashish Garg, Mike Gorman, Onno Kluyt,
Lucas McGregor, Dan North, Joseph Ottinger,

Kirk Pepperdine, Hendrik Schreiber, Alan Williamson

To submit a proposal for an article, go to
http://grids.sys-con.com/proposal

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department subscribe@sys-con.com.
Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)

Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or
Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 135 Chestnut Ridge Rd., Montvale, NJ 07645

Telephone: 201 802-3000 Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly
(12 times a year) for $69.99 by SYS-CON Publications, Inc., 135
Chestnut Ridge Road, Montvale, NJ 07645. Periodicals postage

rates are paid at Montvale, NJ 07645 and additional mailing
offices. Postmaster: Send address changes to: Java Developer’s
Journal, SYS-CON Publications, Inc., 135 Chestnut Ridge Road,

Montvale, NJ 07645.

©Copyright
Copyright © 2003 by SYS-CON Publications, Inc. All rights

reserved. No part of this publication may be reproduced or
transmitted in any form or by any means, electronic or mechan-

ical, including photocopy or any information storage and
retrieval system, without written permission. For promotional

reprints, contact reprint coordinator Carrie Gebert, carrieg@sys-
con.com. SYS-CON Media and SYS-CON Publications, Inc.,

reserve the right to revise, republish and authorize its readers
to use the articles submitted for publication.

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ

For List Rental Information:
Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com
Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Java and Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

want a wireless handheld device
that works with me and doesn’t
make me jump through hoops
just because I want to use Java. I
don’t even want to know Java is

running; I just want it to do its job and
make my life easier.

I’ve been through a variety of
phones and PDAs, and each one had
major irritations. If it wasn’t the poor
performance it would be the clunky
interface. Then there would be the bal-
ance of what the device wanted to be
when it grew up: was it a PDA with a
phone, or was it a phone with fancy
features?

The closest device to date was the
Sony P800. I blogged my whole experi-
ence with the beast and felt it fell far
short of the marketing hype that
accompanied it. I was beginning to lose
hope that Java could deliver its promise
on mobile devices.

Some good news to report: I believe
I’ve found the ultimate Java device, and
it’s so good I’m devoting this entire edi-
torial to it. The device is the BlackBerry
7xxx series.

I love it. It has everything you need
from a handheld. Large color screen,
long battery life, very light, always-on
connectivity, and the killer feature: a
small QWERTY keyboard that is easily
used with your thumbs. The software
bundled with it is strong and useful.
The device has been well thought out
from both a hardware and software
point of view.

Screen quality can’t be underesti-
mated in these devices. It’s the first
thing that will sap the battery life away,
and due care must be given to getting
it just right. The screen is large and
very clear and comes with a backlight
facility that pops on should the light
fade on you. The clarity makes using
this device a joy.

There are so many features on the
BlackBerry 7xxx that I could go on for
pages. For example, a really nice touch
is that it charges through the same USB
cable you sync with. One less power
cube to carry around.

If it’s so great, why isn’t everyone
using it? Good question, and one I have
been giving a lot of thought to. I think
the blame lies primarily with RIM, the
licensors of BlackBerry’s wireless e-mail
technology and, secondarily, with the
wireless operators.

To know about the device you would
first have to know someone or see
someone using it. Assuming you know
of it and head over to their Web site
(www.blackberry.com), you could still
be forgiven for being in the dark. This is
one of the greatest Java devices ever,
but you won’t know that after you visit
their site. RIM is not very good at mar-
keting this device.

RIM is even poor at dealing with the
press. I have repeatedly asked for infor-
mation and interviews, and I’m still
waiting. Why are they hiding?

This device, with its large screen and
integrated keyboard, is crying out for
Java developers to be let loose with it.
This device will make you want to
return to your IDE after dinner and
start letting your creative juices flow.
Devices like these could really secure
Java’s role in the mobile arena.

RIM is not the only one to blame. The
wireless telcos aren’t making it easy. I
had to jump through hoops to get mine
connected here in the UK, and even after
that I’m being charged a fortune for data
going in and out. Compare this to the
“all-you-can-eat” data plans in the U.S. It
shouldn’t be this hard (or costly) surely?

Competition is hot on BlackBerry’s
heels. Palm, for example, has a very
nice device with their Tungsten W
model. Aimed at the same “always-on”
market as the BlackBerry, it will be
interesting to see how well they gain
market- and mindshare. Their press
folks have already contacted me, and
they’re doing a lot to convince Java
developers to come to their device.

The future for these Java devices is
looking rosy – if the manufacturer can
get its act together and create the
groundswell of development to allow
the community to build the rich array
of software it requires.

FROM THE EDITOR

Alan Williamson, when not
answering your e-mails and
working on the next issue of JDJ,
heads up a small team dubbed
the “Thunderbirds of the Java
industry,” providing on- and off-
site rescue for Java projects in
trouble. For more information
visit www.javaSOS.com.
You can also read his blog:
http://alan.blog-city.com.

alan@sys-con.com

Alan Williamson
Editor-in-Chief

J2SE
H

O
M

E
J2E

E
J2M

E

I

Finally a Device
That Delivers

am always on the look out for good
questions to ask candidates in an inter-
view. Not the “How many oranges can I
fit in this room?” kind of nonsense (the
stock response to which is apparently
“with or without us standing in it?”).
Nor the picky, encyclopedic type such
as “In the javax.obscure.DustyCorner
class, which method throws a
FullyDocumentedException?” (If you
do not respond with “I would check the
Javadocs” on the grounds that you
actually know, you really ought to get
out more.)

Instead, I like the sort of technical
question that allows candidates to
demonstrate real insight; where they
can show not only technical depth and
breadth, but also a mature understand-
ing of the software development
process. So I was delighted when a col-
league offered me a perfect interview
question, namely: “What is the point of
test-driven development?”

Test-driven development (TDD) has
grown out of the Agile software move-
ment (www.agilealliance.org) and
Extreme Programming (XP) in particu-
lar. Extreme Programming stipulates a
set of best practices that collectively
encourage core values such as feedback
and simplicity. The feedback occurs in
the form of tests, by delivering in short
iterations, and by the simple expedient
of talking to one another. The simplici-
ty comes from the process of refactor-
ing – ruthlessly – and from only deliver-
ing exactly what the software has to do
right now.

Kent Beck, the original champion of
XP, has extracted the essence of its
development practices and named it
test-driven development. And so to the
model interview answer. The point of
TDD is to drive out the functionality
the software actually needs, rather
than what the programmer thinks it
probably ought to have. The way it
does this seems at first counterintu-
itive, if not downright silly, but it not
only makes sense, it also quickly
becomes a natural and elegant way to
develop software.

We start by writing some client code
as though the code we want to develop
already existed and had been written
purely to make our life as easy as it could
possibly be. This is a tremendously liber-
ating thing to do: by writing a model
client for our code, in the form of a test,
we can define programmatically the
most suitable API for our needs. In addi-
tion, we assert the behavior we want.

Obviously this won’t even compile,
and this is the counterintuitive part – the
code that will sit on the other side of the
API doesn’t even exist yet! The next stage
is to write the minimum amount of code
to get the test compiling. That’s all, just a
clean compile, so you can run the test
(which at this stage will fail). IDEs such
as IntelliJ IDEA or the open source
Eclipse will generate missing classes and
implement missing methods for you.
Now, and only now, you write the appli-
cation code to satisfy the test. The final
piece of the puzzle is to refactor the code
so it’s as simple as it can be. This then
becomes your development rhythm:
write a test, write some code, refactor.

Writing the test before you write the
code focuses the mind – and the devel-
opment process – on delivering only
what is absolutely necessary. In the
large, this means that the system you
develop does exactly what it needs to
do and no more. This in turn means
that it is easy to modify to make it do
more things in the future as they are
driven out by more tests.

We keep the tests we wrote and run
all of them, often, to make sure the sys-
tem does everything it is supposed to
do (and to alert ourselves immediately
if we break any existing functionality).
However, the extremely useful test suite
we’ve created is very much a secondary
benefit of the TDD process.

So when you’re sitting in an inter-
view and someone asks you about test-
driven development, remember that it’s
not about the tests; it’s about seeing
how little you actually need to do and
how cleanly you can do it! If someone
asks you to fill a room with oranges?
Well, I’ll leave that to you.

Test-Driven Development
Is Not About Testing Dan North

I

VIEWPOINT

8 November 2003 www.JavaDevelopersJournal.com

President and CEO:
FFuuaatt KKiirrccaaaallii fuat@sys-con.com

Vice President, Business Development:
GGrriisshhaa DDaavviiddaa grisha@sys-con.com

Group Publisher:
JJeerreemmyy GGeeeellaann jeremy@sys-con.com

Advertising
Senior Vice President, Sales and Marketing:

CCaarrmmeenn GGoonnzzaalleezz carmen@sys-con.com
Vice President, Sales and Marketing:
MMiilleess SSiillvveerrmmaann miles@sys-con.com

Advertising Sales Director:
RRoobbyynn FFoorrmmaa roybn@sys-con.com

Director, Sales and Marketing:
MMeeggaann RRiinngg megan@sys-con.com
Advertising Sales Manager:

AAlliissaa CCaattaallaannoo alisa@sys-con.com
Associate Sales Managers:

CCaarrrriiee GGeebbeerrtt carrieg@sys-con.com
KKrriissttiinn KKuuhhnnllee kristen@sys-con.com

Editorial
Executive Editor:

NNaannccyy VVaalleennttiinnee nancy@sys-con.com
Associate Editors:

JJaammiiee MMaattuussooww jamie@sys-con.com
GGaaiill SScchhuullttzz gail@sys-con.com
JJeeaann CCaassssiiddyy jean@sys-con.com

JJeennnniiffeerr VVaann WWiinncckkeell jennifer@sys-con.com
Online Editor:

LLiinn GGooeettzz lin@sys-con.com

Production
Production Consultant:

JJiimm MMoorrggaann jim@sys-con.com
Lead Designer:

LLoouuiiss FF.. CCuuffffaarrii louis@sys-con.com
Art Director:

AAlleexx BBootteerroo alex@sys-con.com
Associate Art Director:

RRiicchhaarrdd SSiillvveerrbbeerrgg richards@sys-con.com
Assistant Art Director:

TTaammii BBeeaattttyy tami@sys-con.com

Web Services
Vice President, Information Systems:
RRoobbeerrtt DDiiaammoonndd robert@sys-con.com

Web Designers:
SStteepphheenn KKiillmmuurrrraayy stephen@sys-con.com
CChhrriissttoopphheerr CCrrooccee chris@sys-con.com

Accounting
Accounts Receivable:

KKeerrrrii VVoonn AAcchheenn kerri@sys-con.com
Financial Analyst:

JJooaann LLaaRRoossee joan@sys-con.com
Accounts Payable:

BBeettttyy WWhhiittee betty@sys-con.com

SYS-CON Events
President, SYS-CON Events:

GGrriisshhaa DDaavviiddaa grisha@sys-con.com
Conference Manager:

MMiicchhaaeell LLyynncchh mike@sys-con.com
National Sales Manager:

SSeeaann RRaammaann raman@sys-con.com

Customer Relations
Circulation Service Coordinators:

NNiikkii PPaannaaggooppoouullooss niki@sys-con.com
SShheelliiaa DDiicckkeerrssoonn shelia@sys-con.com

EEddnnaa EEaarrllee RRuusssseellll edna@sys-con.com
JDJ Store Manager:

RRaacchheell MMccGGoouurraann rachel@sys-con.com

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Dan North has been writing
software for 12 years, and is a

programmer and coach for
ThoughtWorks (www.thought

works.com), a software develop-
ment consultancy, where he

encourages people to write tests.

dan.north@thoughtworks.com

More little black lines than ever before.

*new or updated features with Crystal Reports 9 Advanced

Java, .NET, and COM SDKs –
Integrate reporting/presentation
layers with virtually any application.

Report Designer –
Create highly formatted reports
without any programming.

*Unlimited SQL Control –
Deliver complete control
over database connectivity.

Training and Technical Support –
Get fast, maximum results with

online or onsite training, and a full
range of technical support options.

*Report Parts –
Specify existing key report elements,

Report Parts, for dynamic access
via wireless or web applications.

*Data Access –
Access almost any data with native,

ODBC, OLE DB connectivity to relational,
OLAP, XML, and enterprise data sources.

*Custom Report Style Templates –
Create and apply a consistent look
and feel across multiple reports.

Exports –
Export in multiple formats: XML, PDF,
DHTML, Excel, Word, RTF, text, and email.

Customizable report viewers –
Use multiple viewer controls including:
Java, .NET, DHTML, and ActiveX®.

*Web Deployment –
Implement dynamic web reporting, including

queuing and caching of user requests for
efficient management of user loads.

Extensible Formula Workshop –
Select from over 300 included

functions and operators.

Advanced Parameters –
Deliver dynamic reports with pre-defined

parameters for unique data views at runtime.

*Crystal Repository –
Store, manage, and reuse
report objects.

Online Developer Zone –
Use extensive online samples and
resources to reduce development cycles,
coding, and learning curves.

With over 50 new features inside Crystal Reports 9, it’s impossible to list all the
finer points of our high-productivity reporting solution.

More features. More productivity. More flexibility.

Allowing detailed control of end user report viewing and runtime interaction,
Crystal Reports is an ideal solution for developers seeking efficient integration
of dynamic application reporting and presentation layers using Java, .NET,
and COM.

Crystal Reports is also a fundamental component of Crystal Enterprise,
a web-based information delivery system. This reliable, scalable, and
secure technology is an excellent starting point for application developers
who need a platform that can grow.

With over 14 million licenses shipped, and chosen by
industry-leading technology partners like Microsoft and
SAP for its high-productivity solutions, Crystal Decisions
is a trusted software vendor.

Find out more. Visit our web site for free online seminars,
the Developer Zone, demos, and evaluation software at:
www.crystaldecisions.com/lbl/.

To buy now, call 1-800-877-2340, visit our online store at
www.crystaldecisions.com/lbl/estore/, or contact your reseller.

© 2003 Crystal Decisions, Inc. All rights reserved. Crystal Decisions, Crystal Reports, Crystal Enterprise,
and the Crystal Decisions logo are either a trademark or registered trademark of Crystal Decisions, Inc.
in the U.S and/or other countries. All other trademarks or registered trademarks referenced are the
property of their respective owners.

10 November 2003 www.JavaDevelopersJournal.com

e tend to see the United States through a
lens made up of its major population
centers: New York; Los Angeles;
Washington, DC; Miami; Atlanta;
Chicago; and a few others. That’s
because these are the places that have
things “going on,” and as a result we get a
skewed picture not only of what the
United States is about, but of what the
United States actually is. From this bird’s-
eye view, you get the sense that America
is all about urban angst, hip-hop, people
crammed into shiny metal boxes.

The truth, however, is quite different.
Those things are part of America, to be
sure, but the wider reality is that
America is also open, made up of small,
peaceful towns; students going home
after school to work on the farm; kids
playing pick-up baseball games in open
sandlots; shopkeepers talking to their
customers by name. America’s a true
melting pot of color and culture – and
because of the lens through which we
see her, it’s hard to pick out the good
among all the bad.

I believe that Java can be looked at the
same way, with different groupings based
on operating systems, language, aptitude,
and application, among other things. By
the same measure, we look at our sub-
strata (Java) through a lens the same way
a nation is looked at. We see the “high-
water marks,” the outliers who stand out
from the crowd, and as a result it’s very
easy for us to get a bit misled about where
the stream really stands, you might say.

I suspect that Java’s doing much better
than people fear. There have been lots of
events lately (the “Java Desktop,” Bill Joy’s
resignation, and Merrill Lynch’s rather
pessimistic recommendation to Sun that
it spin off Java, among others) that focus
on the negative, that aim attention at
where Java hasn’t succeeded, or, possibly,
where it has yet to be successfully lever-
aged. This is focusing on the choppy sur-
face, ignoring the calm beneath.

I think there’s a great chance that
past all the hype – positive and nega-
tive – Java’s doing very well; it’s very

robust, it’s very capable, and the nega-
tivity needs to be seen for what it really
is – noise and fury aimed at the infra-
structure in which Java exists. Are there
power plays and egos at stake?
Certainly…but do they really affect the
ordinary Java developer? I’d say no.

What you’re seeing from the industry
analysts, academics, and the press is
equivalent to Sim City from the city
planner’s perspective, and I think the
Sims themselves are bopping around
happily in sometimes unexpected (and
unexpectedly successful) ways.

• • •
Lately, I’ve been working on a set of

applications using some very nice hard-
ware and software, things that haven’t
been getting a lot of press coverage: a
Sparc laptop (Tadpole Computer’s
SparcLE), Solaris 9, the poor old J2SDK
1.4.2, Orion, and a variety of editors
including Eclipse, IDEA, and JBuilder 9.
Honestly, I’ve surprised myself: it’s been
an eye-opening experience, reminding
me of how nice all this is. These things
aren’t sexy anymore, as far as I can see.
They just work, and work well. I’m not
fiddling about with cutting-edge stuff,
hoping that it’ll come together in time to
create a successful application; I’m
using the standards to do what I need
them to do, as building blocks for an
application that does what I need.
Perhaps these things don’t have the bul-
let-list success that others do, and I’m
fine with that – I’d rather just get things
done. This stuff isn’t rocket science
unless we make it that way, and we don’t
have to. One of Java’s strengths is in
abstraction, so that we don’t have to be
the academic upper crust, working with
obscure technical epistemology to obvi-
ate technical detritus to accomplish
minutiae; we just put things together so
they work. Sure, we may not always tune
things specifically for a given platform
or solution space – but we can do what
we need faster, with fewer bugs, and
with more portability than anyone else.

This stuff rocks.

J2EE INSIGHT

It Just Works
We tend to see the United States

through a lens made up of its

major population centers. The

truth, however, is quite different.

America’s a true melting pot of

color and culture. I believe that

Java can be looked at the same

way, with different groupings

based on operating systems, lan-

guage, aptitude, and applica-

tion, among other things.

Manging J2EE Systems
with JMX and JUnit

The promise of J2EE was to

build more robust, scalable, and

secure enterprise systems. J2EE

promised that we could do it

quickly and easily since J2EE is

supposed to take the complexity

out of building powerful distrib-

uted systems. But as with the

J2EE spec, these systems usually

suffer through management only

as an afterthought.

Joseph Ottinger is a consultant
with Fusion Alliance

(www.fusionalliance.com) and is
a frequent contributor to open
source projects in a number of

capacities. Joe is also the acting
chairman of the JDJ Editorial

Advisory Board.

josephottinger@sys-con.com

J2
SE

H
O

M
E

J2
E

E
J2

M
E

10

12

Joseph Ottinger
J2EE Editor

22
Enabling a File
System as a
Transactional
Resource

It Just Works

W

12 November 2003 www.JavaDevelopersJournal.com

he promise of J2EE was to build more
robust, scalable, and secure enterprise
systems. J2EE promised that we could
do it quickly and easily since J2EE is
supposed to take the complexity out of
building powerful distributed systems.
But as with the J2EE spec itself, these
systems usually suffer through man-
agement only as an afterthought.

Many management systems focus on
proprietary interfaces that react to spe-
cific events. They offer solutions in
which your management is tied up with
the system you are managing.
JMX4ODP decouples testing and man-
agement from the target system and
focuses on using reusable components
that are bound and deployed using
XML configurations.

This article walks you through the
process of setting up a basic service
monitor and event handler for a com-
mon J2EE n-tier system. Developers of
J2EE systems will be able to use
JMX4ODP to create testing suites to
help them develop more reliable sys-
tems. J2EE application administrators
will be able to use JMX4ODP to simplify
and regulate the management of
deployed systems.

Technologies Used
JMX4ODP is built from open standards

technologies because they offer a better
return on their investment by leveraging

the work and experience of the communi-
ty. Open standards also leverage your work
and experience; for example, if your proj-
ect has been tested in the past, you proba-
bly have someone on staff who already
has JUnit experience. If you don’t, learning
JUnit will be useful for future projects.

JUnit and JMX are the two core foun-
dations for JMX4ODP’s approach to
management. JUnit is becoming the de
facto standard for unit testing. JUnit
support is common in most IDE and
test suites. JMX is Java’s official answer
to system management. Groups like
JBoss are pushing JMX even further to
make it a key piece in building complex
infrastructures. JMX support is com-
mon in major J2EE application servers.
IBM has even integrated JMX function-
ality with its popular Tivoli suite.

What You Need
To implement the examples in this

article, make sure you have the follow-
ing libraries available:
• JMX4ODP: The core diagnostic and

event manager suite (http://jmx-
4odp. sourceforge.net).

• JUnit: The de facto standard for unit
testing of Java components (www.
junit. org).

• JMX: The J2EE Java Management
Extensions (www.javasoft.com/jmx).

• JMX Remoting: The JSR to expand
JMX to include remote access
(http://jcp.org/en/jsr/detail?id=160).

• Xerces: The popular Apache XML
parser (http://xml.apache.org/
xerces -j/index.html). Note:
JMX4ODP has not been ported to use
Xerces 2 yet, so you’ll need Xerces 1,
which ships with the current JBoss,
WebLogic, and WebSphere.

• JavaMail: The J2EE extension for
e-mail (http://java.sun.com/ prod-
ucts/javamail/).

JUnit as a Diagnostics Tool
JUnit bills itself as a regression-testing

suite for code objects, but it’s not much
of a leap to see it as a tool for distributed
system diagnostics. JUnit runs tests by

instantiating objects, invoking their
methods with known inputs, and check-
ing the output against expected returns.

Distributed systems are built over time
as a collection of services – some stan-
dardized, some proprietary. Each service
can be treated as an object for JUnit to
test. In a typical J2EE installation, you
have HTTP daemons, servlet engines,
JNDI trees, RMI-enabled EJB containers,
and databases accessed via JDBC.

Figure 1 illustrates these services as
extensions of common protocols or as
classes of objects to test. Since a system
has a limited number of supported pro-
tocols, you can save a lot of coding by
creating a base test class for each proto-
col and extending it as needed. The
JMX4ODP’s org.jmx4odp.junit Diag-
nosticWorkers package contains classes
for testing HTTP, RMI, and JDBC services.

JUnit Test for Services
The JMX4ODP test classes follow the

JUnit “assert” pattern. Each possible
test method name starts with “assert,”
allowing developers to easily identify
testing methods versus utility methods.
Each method is stateless, allowing mul-
tiple testing objects to utilize the same
underlying protocol test object, e.g., the
HttpClientTest object contains meth-
ods for acquiring an HttpURLCon-
nection and testing the connection for
HTTP statuses and content.

By extending these basic service test
classes to encapsulate a series of stateful
tests, we get objects that are simply beans
that contain a set of tests to run on a
service. For example, you could extend
the HTTP protocol test class to create an
object that checks if you can reach a URL.
You could then extend this class to make
a test that checks a secured URL.

JMX4ODP’s org.jmx4odp.junitDiag-
nosticWorkers package contains tests for
three basic services: HTTP, RMI, and
JDBC. Each is implemented as a stateful
bean that you instantiate, set parameters
for, and then hand over to JUnit to run.

To test HTTP services with
BasicHttpUrlTest, set the URL you want

Managing J2EE Systems with
JMX and JUnit
Manage new systems as they are developed

T

J2
SE

H
O

M
E

J2
E

E
J2

M
E

TESTING

Lucas McGregor

Figure 1 JUnit service testers

C
o

p
y

ri
g

h
t

©
 2

0
0

3
 C

a
n

o
o

 E
n

g
in

e
e

ri
n

g
 A

G
.

A
ll

 R
ig

h
ts

 R
e

se
rv

e
d

.
Ja

va
 a

n
d

 a
ll

 J
a

va
-b

a
se

d
 t

ra
d

e
m

a
rk

s
a

re
 r

e
g

is
te

re
d

 t
ra

d
e

m
a

rk
s

o
f

S
u

n
 M

ic
ro

sy
st

e
m

s,
 I

n
c.

Rich clients for J2EE

Canoo Engineering AG http://www.canoo.com/ulc/

D o w n l o a d y o u r f r e e t r i a l t o d a y !

B e n e f i t s f o r :

D e v e l o p m e n t & M a i n t e n a n c e
■ rich GUIs with simple server-side programming model

■ integrates with any J2EE software

■ great tool support: visual editor, load tester

D e p l o y m e n t & O p e r a t i o n
■ application release on server only

■ application independent presentation engine on client

■ minimal network traffic: several times less than HTML

ULC offers rich client GUI components with a

server-side programming model. Applications

using ULC combine the benefits of browser and

desktop applications.

ULC components are lean and based entirely on

Java standards. They integrate with any

existing J2EE software.

Get this proven library and save time, money,

and reduce your risk throughout the software

lifecycle.

16 November 2003 www.JavaDevelopersJournal.com

to check and hand the object to JUnit,
which will invoke each method that
starts with the word “test.”
BasicHttpUrlTest’s only test method is
“test_URLOk,” which checks the URL
for a returned HTTP: 200 OK.

BasicEjbTest tests EJB services. It can
use the settings in your jndi.properties
to connect to your JNDI tree, or you
can set them programmatically. You
must set the JNDI name of the EJB. It
contains one test, “test_AccessEJB,”
which tries to retrieve a RemoteObject
from the JNDI tree by the set name and
invoke getEJBMetaData upon it.

The BasicJDBCTest is more compli-
cated. You need to set the JDBC URL, a
test SQL select statement, and the data-
base username and password. You can
set an optional record threshold, which
defaults to 1. This test object checks for
two things before giving the service a
green light. First, it runs “test_Can-
Connect” to check if JDBC can connect
to the database. Second, it runs “test_
SelectGood” to ensure that the test SQL
select statement returns at least as
many records as the threshold is set to.

Building Your TestSuite
JUnit has the ability to hierarchically

arrange tests using TestSuite objects,
but TestSuites are maintained program-
matically, which is a big maintenance
hit. JMX4ODP uses the org.jmx4odp.
junitDiagnosticWorkers.SuiteAssembler
object to translate an XML file into a
TestSuite object, which cuts all the cod-
ing from maintenance.

Figure 2 shows the TestSuite XML
entities used by the SuiteAssembler.
TestSuite objects can hold either anoth-
er TestSuite or TestCase. A TestCase is
one of the stateful test beans. You
invoke the get/set methods for service
and test properties such as URLs and

thresholds with the INVOKE element,
which can take arguments of
java.lang.String, boolean, and int. A
TestSuitexml to test Yahoo’s Web servers
would look like:

<TESTSUITE name="Web Servers" >

<TESTCASE name="Yahoo" className=\

"org.jmx4odp.junitDiagnosticWorkers\

BasicHttpUrlTest" >

<INVOKE method="setUrl" >

<ARG type="java.lang.String"

value="http://www.yahoo.com"

/>

</INVOKE>

</TESTSUITE>

SuiteAssembler will parse the XML
and generate a TestSuite called “Web
Servers” that contains a single
BasicHttpUrlTest test bean called
“Yahoo”. It then hands the TestSuite
over to JUnit, which will run the
BasicHttpUrlTest.test_UrlOk method to
see if a connection to www.yahoo.com
returns an HTTP 200:OK. If Yahoo is
unreachable or returns a different sta-
tus, JUnit will display a failure.

You can use JUnit’s junit.swingui
.TestRunner to run JUnit tests in a
graphical interface. Pass TestRunner
the name of your test class as an argu-
ment. The JMX4ODP SuiteAssembler
will load a TestSuite.xml file in the
working directory. If you use the exam-
ple TestSuite.xml and type:

> java junit.swingui.TestRunner

org.jmx4odp.junitDiagnosticWorkers.SuiteAsse

mbler

in the same directory, JUnit will parse
the file, try to connect to www
.yahoo.com, and display the results.

At this point you could simply build
a TestSuite.xml file to check all the serv-
ices you want and just use JUnit to run
on-demand diagnostics of all your sys-
tems. If the line is green, the servers are
clean. This would certainly be handy at
3 a.m. when you get the “the site is act-
ing weird” phone call.

Already you can quickly and repeat-
edly run a set of known tests on your
site and identify problems. However,
this is a reactive instead of proactive
solution. We now need to automate
these tests and feed the results to a sys-
tem that can use them.

Using Tests to Manage with JMX
Before JMX, there was no Java stan-

dard way for starting, stopping, moni-
toring, and managing components. If
you’re not familiar with JMX, there are

some great books, such as JMX:
Managing J2EE with Java Management
Extensions by Marc Fleury, Juha
Lindfors, and The JBoss Group.

JMX is a powerful and convenient
way of building loosely coupled sys-
tems. The JMX agent is a bean contain-
er for specialized management beans
called MBeans. The agent allows you to
instantiate new MBeans, register exist-
ing MBeans, bind MBeans together,
and send and receive notifications.

Many J2EE engines and manage-
ment packages have adopted JMX as a
core feature, because it’s flexible and
extensible. J2EE programmers are
familiar with component-based pro-
gramming, and JMX capitalizes on that
to create component-based manage-
ment systems that are scalable. JSR 160
(www.jcp.org/en/jsr/detail? id=160) is
extending the core JMX specification to
include remoting functionality, which is
used by JMX4ODP to connect clients
and other agents to each other via RMI.

EventRunner
org.jmx4odp.junitRunner.Event

Runner is an MBean that implements a
JUnit TestRunner. It serves as the bridge
between your JUnit diagnostic setup and
JMX management. It will fetch a Test-
Suitexml from a given URL, use the
SuiteAssembler to construct a TestSuite,
hand it to a JUnit TestRunner to run all the
tests, and broadcast any failures or errors
as notifications to any registered listeners.
The EventRunner will then sleep for the
specified time and do it all over again.

You can think of JMX4ODP as a reflex
system for your J2EE system. JUnit test
objects act as live nerves gathering infor-
mation about the state of objects and ser-
vices in your system. The JMX agent is like a
spinal cord, transmitting these impulses
between the brain and muscles. The Event-
Runner MBean, the system’s brain, coordi-
nates all the JUnit tests and keeps them
running regularly. Now you just need to
add some muscle to complete the system.

Muscle takes the form of JMX
NotificationListener MBeans. Any
MBean that implements the javax.
management.NotificationListener
interface can register itself with the
EventRunner to receive failure and
error notifications. The Notification-
Listener will receive a javax. manage-
ment.Notification object that contains
attributes including timestamp, type,
and message. The type of message can
be set via the two EventRunner meth-
ods: setErrorTopic(String s) and
setFailureTopic(String s). The event
runner will broadcast the message as

TESTING
J2

SE
H

O
M

E
J2

E
E

J2
M

E

Figure 2 TestSuite.xml document objects used by SuiteAssembler

*Denotes required field

Figure 3 Executive.xml document objects used by XMLExecutor

*Denotes required field

For more info and a free eval, visit:

http://java.quest.com/jprobe/jdj

JProbe®
Find the cause of J2EE code performance,memory

and threading problems faster than ever before

with Quest JProbe.New investigative features for

finding memory problems combined with dramatic

performance improvements mean even quicker

resolution of problems in your application, servlet,

JSP and EJB code.

JProbe Suite

JProbe Profiler

JProbe Memory Debugger

JProbe Threadalyzer

JProbe Coverage

As Java development evolves,so does JProbe®

© 2003 Quest Software,Inc.Quest and JProbe are trademarks or registered trademarks of Quest Software,Inc.Java and all Java-based marks are trademarks or registered trademarks
of Sun Microsystems,Inc.in the United States and other countries.All other products are trademarks or registered trademarks of their respective companies.

Part of the Quest Performance Management Suite for the J2EE Platform

18 November 2003 www.JavaDevelopersJournal.com

an error type if an error occurred while
trying to run the test. It will use the fail-
ure topic if the test was unsuccessful.
The event notification message will be
formatted like TestFailure.getName() +
": " + failure.toString(); if failure.to
String() returns a null, it will use fail-
ure.thrownException().toString().

A NotificationListener can register
with the EventRunner and be activated
upon these events. It can use the
Notification.getMessage() to learn
which test failed and how. We’ll use the
org.jmx4odp.notificationWorkers.Notifi
cationMailer as a simple starting place.
This MBean uses the javax.mail.* pack-
age to e-mail JMX notifications. By reg-
istering the Notification Mailer with the
EventRunner, you have a failure notifi-
cation system that will alert your sysad-
min when a problem occurs.

All this needs to be set up program-
matically which is a maintenance issue.
JMX’s MLet object can be used to make
a JMX agent load MBeans specified in
an XML file, but it doesn’t include the
ability to invoke functions on instanti-
ated MBeans. To overcome this, JMX-
4ODP uses its org.jmx4odp. j4oNet.Xml-
Executor object to load and access
MBeans in an agent.

Figure 3 shows the XML entities used
by the XmlExecutor. Listing 1 shows the
beginning of such a file.

Everything is a child of the
EXECUTEXML element. The JMXRE-
MOTE element tells XmlExecutor to
connect to the JMX agent’s RMIAdaptor.
TRY groups elements together, so if one
fails, it will skip the rest in the group so
you don’t have to wait for each element
to fail. Use CREATEMBEAN to tell the
JMX agent to instantiate a new MBean.
COMMAND is the big advantage of
XmlExecutor; it allows you to invoke
methods on existing MBeans.

BaseAgent
JMX4ODP ships with org.jmx4odp.

j4oNet.BaseServer as its JMX agent. It
takes the HTMLAdaptor port and the
RMIAdaptor port as its two arguments.

Type

> java org.jmx4odp.j4oNet.BaseServer 8080

1099

to start the BaseServer. Now point a
Web browser to localhost:8080 to see an
HTML interface of your MBeans.
JMXREMOTE will use port 1099.

Now that you have a JMX agent with
an RMIAdaptor running, you can create
an XML Execute.xml file that will tell
XmlExecutor to:

1. Create an EventRunnerMBean.
2. Invoke EventRunner.setFailureTopic

to set the failure Notification type.
3. Invoke EventRunner.setErrorTopic

to set the error Notification type.
4. Invoke EventRunner.SetSuite-

AssemblerConfig to give the URL for
your TestSuite.xml.

5. Invoke EventRunner.setSleepCount
to set how many milliseconds to
sleep between test cycles.

6. Create a NotificationMailer MBean.
7. Invoke NotificationMailer.setSmtp-

Host to set the host name of your
mail gateway.

8. Invoke NotificationMailer.setSmtp-
User and setSmtpPassword to set the
username and password for your
SMTP user if needed.

9. Invoke NotificationMailer.setSmtp-
Port if your gateway uses anything
other than port 25.

10.Invoke NotificationMailer.setFrom
Address to the address you want the
notification e-mails to come from.

11.Invoke NotificationMailer.setSubject
to set the e-mail subject line.

12.Invoke NotificationMailer.addTo
Address to add an address to which
to send notification e-mails.

13.Invoke NotificationMailer.setActive
to activate the mailer; otherwise it
will ignore all notifications while
inactive.

14.Invoke NotificationMailer.add
ListenedToObject to .“MONITOR:
name=EventRunner,Notification-
Logger=true,” which will tell
Notification
Mailer to listen to the Notification
Logger created by the EventRunner.

15.Invoke EventRunner.startDaemon
to start the testing cycle.

Figure 4 illustrates how JMX4ODP
combines the JUnit tests and JMX man-
agement components to create a man-
agement system. If you use the example
TestSuite.xml, you’re testing if you can
reach Yahoo. If this test fails, a JUnit
event will be broadcast to all registered
listeners. Your only listener right now is

an MBean that will send out the event
as an e-mail. If you start up a Web
browser to http://localhost:8080, you’ll
see your JMX agent’s HTMLAdaptor and
all the new MBeans you started.

We’ve Only Just Begun…
The most obvious ways to expand

JMX4ODP is to:
• Create custom tests.
• Create custom NotificationListeners.

The example we just used showed how
to create an alert system. However, you
could easily create a NotificationListener
MBean that alters the system’s state
instead of telling your sysadmin to do it.
For example, if your JBDC tester finds that
your primary database has gone down,
you could have a NotificationListener
automatically start the failover procedure.
Other possible directions would include
automating start-up and shut-down via
custom NotificationListeners; or monitor-
ing log file size, network traffic, or
response time via custom JUnit test beans.

JMX and JUnit allow for loosely cou-
pled designs that are modular, making
it trivial to add and rearrange tests and
responses. To add new actions, register
new NotificationListeners. To change
your test plans, update an XML file.
Maintenance of your management suite
should not be a full-time job. Your diag-
nostics and testing systems are no
longer a coupled part of the target sys-
tem. Once you’ve created common
components, they can be used to man-
age new systems as they’re developed.

By using the JMX4ODP mode of design,
management isn’t an afterthought, but nei-
ther is it a burden of intense design or the
lock-in of proprietary solutions. Manage-
ment becomes another one of those things
you get free when you use J2EE.

Resource
• JMX: http://java.sun.com/products/

JavaManagement/index.html

TESTING
J2

SE
H

O
M

E
J2

E
E

J2
M

E

Figure 4 JMX/JUnit event

notification system

Lucas McGregor is the
CTO of Xdrive, where he
manages their architec-

ture and technology.
Over the years he has
designed distributed

management systems
for tier-one national
ISPs, massive online

gaming systems, and
consulted-on projects
ranging from distrib-

uted intelligent agents
to automated protein

analysis. He is interest-
ed in the architecture of
robust and manageable

distributed systems.

mcgregor_lucas@
hotmail.com

LLiissttiinngg 11 Code template for a custom task

1 <EXECUTEXML>
2 <JMXREMOTE host="localhost" \
3 port="1099">
4 <TRY>
5 <CREATEMBEAN
6
class="org.jmx4odp.junitRunner.\
7 EventRunner" objectName=\
8 "MONITOR:name=EventRunner"
/>
9
10 <COMMAND objectName=\
11 "MONITOR:name=EventRunner"
12 method="setErrorTopic">
13 <ARG
type="java.lang.String"
14 value="error" />
15 </COMMAND>

16 ...

J2
SE

H
O

M
E

J2
E

E
J2

M
E

ransactional support is fundamental to application develop-
ment. While most data sources are transactional in nature,
some data sources like the file system are not.

In typical J2EE deployments, applications often need to inter-
face with other applications through file-based messages. Such
deployments would benefit from an adapter that would buffer all
file operations and provide a transactional view to the file system.

This article, targeted at developers, demonstrates how J2EE
Connector Architecture and JTA specifications can be imple-
mented to build such an adapter, XAFileConnector. We’ll also
suggest enhancements to extend the adapter functionality in
light of the new proposed draft connector specifications.

Most applications are bound to the local file system. They
use the file system to store and share data. Often the success
of interactions with the file system needs to be tied to the
successful completion of other actions involving other
Enterprise Information Systems (EIS). For instance, we often
encounter situations where a record is to be deleted from the
database only after it has been successfully written to a file.
While the same can be easily built into the application logic,
it would be infinitely more neater if we could develop an
extension on the file system that would help us include the
file operations such as “create”, “read”, “update”, and “delete”
as part of a transactional unit of work that could be commit-
ted or rolled back as a group. This extension is called a
Resource Adapter. The ubiquitous presence of the file system
and the role it plays in Enterprise Application Integration
strategy justify the need to build such a resource adapter.

For a J2EE-managed environment, i.e., an environment char-
acterized by the presence of a container for runtime support,
J2EE recommends Connector Architecture as a standard way of
integrating heterogeneous EISs with the application server. The
Connector Architecture specifies application- and system-level
contracts to be implemented by the EIS. The resource adapter
implements the EIS side of the contracts. The adapter uses a
native interface specific to the underlying EIS, runs in the con-
tainers address space, and manages access to the EIS resources.
Adherence to the Connector contracts on one hand ensures that
the same adapter can be deployed on different vendors’ contain-
ers, while ensuring that application and tool developers have a
standard interface to program to for accessing different EIS sys-
tems. Among the set of contracts that need to be implemented by
the resource adapter to seamlessly plug-in to any J2EE platform
is the XAResource transaction contract. This contract defines the
communication interfaces between the parties involved in a dis-

tributed transaction. Implementation of this interface by the
adapter enables seamless propagation of transaction context and
allows the associated resource manager (RM) to participate in a
two-phase commit protocol along with other resources.

With this introduction we proceed to discuss what these
contracts are and what it takes to implement these contracts
to build an adapter.

Understanding and Implementing the Contracts
The application contract manifests itself as a Common

Client Interface (CCI). CCI is the client side of the adapter
and performs the following roles:
• Specifies how application components connect to the EIS

through a resource adapter
• Provides an API for coding EIS function calls and retrieving

results

Connecting to the EIS
ConnectionFactory is the application’s gateway to the EIS. It’s

instantiated at the time of deployment by the container and a ref-
erence to it, or its serialized representation, is bound to the JNDI
namespace. Later the application components do a JNDI lookup
to get hold of the factory to create connection objects to the EIS.
The ConnectionFactory does not represent the actual connection
repository, nor is the connection the actual physical connection
to the EIS. Both are client-side proxies that nevertheless maintain
handles to the actual factory and connection objects, respectively.
The container plays the role of an intermediary between the real
objects and their proxies, and the mechanism allows the contain-
er to inject value-added services by intercepting calls made on
the proxies before they’re actually delegated to the real objects.

When a ConnectionFactory encounters a getConnection
request, it delegates it to the ConnectionManager instance.

public Connection getConnection()

throws ResourceException {

return (Connection)connMgr.allocateConnection

(mngdConnFactory, new ConnectionRequestInfoImpl());

}

In a managed environment the ConnectionManager
implementation is provided by the container. The
ConnectionManager maintains a pool of connections corre-
sponding to each factory. The ConnectionManager checks

T

22 November 2003 www.JavaDevelopersJournal.com

24 November 2003 www.JavaDevelopersJournal.com

whether it can service the request from the pool. If not, it
requests the real factory (ManagedConnectionFactory) to
create a new connection.

How does the container know about the availability status
of a connection?

The Connector Architecture prescribes an elaborate mecha-
nism of listeners to implement callbacks. Whenever a new con-
nection is created, the container registers a listener with it. The
connection raises event notifications to intimate the container
about the happenings on the connection. When a close is
called on the connection proxy it terminates its association
with the physical connection. The physical connection in turn
generates an event. All the listeners registered on the connec-
tion can react to the event. The container on its part uses the
event to change the availability status of the connection from
in-use to available, i.e., if the connection is not participating in
a transaction. If the connection is participating in a transac-
tion, the container waits for the transaction to commit before it
can make the connection available (see Listing 1).

Invoking EIS Functions
An InteractionSpec implementation holds properties for

driving an interaction with an EIS instance. In our case each
property maps to a File Operation that may be performed.

public static final int CREATE = 10;

public static final int UPDATE = 20;

public static final int DELETE = 30;

public static final int MOVE = 40;

public static final int SKIP = 50;

public static final int READ = 60;

Since CCI is EIS independent it cannot use any of the EIS
data structures. To get over this, CCI introduces the concept
of a record. A record is a generic representation of data that’s
exchanged with the EIS. More specific implementations to
represent hierarchical, tabular data collections can also be
implemented. XAFileConnector extends the MappedRecord,
which is a key value representation of record elements for
both input and output records (see Listing 2).

CCI defines an interaction interface that allows a client to
interact with EIS. An interaction represents a single commu-
nication with the EIS, an EIS function call. An interaction
instance is obtained from a connection. The interaction
instance is required to maintain its association with the con-
nection instance. The interaction delegates its execution to
the connection, which in turn delegates its execution to the
associated ManagedConnection (see Listing 3).

Transaction Contract
A transaction as we know it is a set of operations per-

formed in such a way that the state of the system after the
transaction is either the cumulative effect of state changes due
to successful individual operations or is the initial state before
the commencement of the transaction in case one or more
operations happens to fail. Transactions can be classified into
two types based on the number of resources participating.
1. A local transaction performs operations on a single RM.

The local transactions can be further classified based on
the manner of demarcating transaction boundaries.
• javax.resource.cci.LocalTransaction: These run under

the control of the RM. The transaction object can be
obtained from the connection object and used to
demarcate transaction boundaries somewhat analogous
to the way JDBC setAutoCommit(false) and commit APIs
are used to demarcate transaction boundaries.

• javax.resource.spi.LocalTransaction: Work in this type
of transaction can accrue over multiple client compo-
nents. A client component may do some work on a
resource and pass control to another component, which
may again do some work while still being part of the
same transaction. The transaction context is passed
along with the control, and it contains the following
information:
– A reference to the transaction manager (TM), the

external entity that is used to demarcate transaction
boundaries

– A globally unique transaction identifier, XID,
generated by the TM

– A transaction timeout time
2. Global/distributed transactions – work in this type of

transaction can span multiple RMs. The transaction man-
ager demarcates the transaction boundaries. A TM coordi-
nates the activities on the participating RMs using the
XAResource interface. An RM knows only about the work it
does for its transaction branch. The XAResource interface
implements the two-phase commit protocol between the
RMs and the TM. The XAResource interface allows for a
one-phase optimization in case only one resource is par-
ticipating.

With this brief introduction to transactions we’ll start with
how we can incorporate transactional ability into our file sys-
tem adapter.

For a file system adapter to be able to roll back a transaction,
i.e., revert to state prior to the start of a transaction, an adapter
must either memorize the original state or it must be able to get
back to the original state by performing certain anti-operations
that reverse the effect of the operations. To ensure feasibility and
consistency at all times, the anti-operations have to be per-
formed in the order that is exactly the reverse order in which the
operations were performed. Similarly, committing a transaction
should flush all transactional logs to free all memory.

For each file operation on the connection that modifies
the state of the file system (nonread only call), XAFile-
Connector adds a WorkItem to the associated transaction’s
work list. If there’s no active transaction associated with the
connection, it autocommits the work and no WorkItem is
created. The WorkItem stores enough information about the
associated operation to be able to reverse its effect in case of
a rollback or to do a cleanup of the backup in case of a com-
mit. A work area is designated to store the information need-
ed for restoration in the event of a rollback (see Listing 4).

Note how MOVE and CREATE file operation do not have
any associated cleanup during operation commit while
UPDATE and DELETE operations delete the backups.

Depending on the kind of transaction running,
javax.resource.cci.LocalTransaction, javax.resource.spi.
LocalTransaction, or XAResource keeps track of the work
being done in the transaction impending completion.

CCI Local Transaction implementations are obtained
directly from the connection, without the container having
any role to play. Since the container is not directly involved, it
is not intimated of the state of the transaction, so CCI imple-
mentations of local transactions differ from SPI implementa-
tions in the sense that they need to raise event notifications to
apprise the container of transaction life-cycle events. The
events help the container in connection pool management.
Since there’s only a marginal difference in functionality, the
same class is used to implement both forms of local transac-
tions with a flag identifying the type of transaction the current
instance represents.

J2
SE

H
O

M
E

J2
E

E
J2

M
E

26 November 2003 www.JavaDevelopersJournal.com

Our implementation model exhibits the following rela-
tionships shown in Figure 1.

Each ManagedConnection can provide an XAResource
implementation for distributed transaction management. The
beginTransaction call associates the application component’s
thread of control with a global transaction. The TM generates a
globally unique XID and calls start on all open RMs that are
linked with the thread. The RMs are enlisted with the transac-
tion. To guarantee scalability of the Connector Architecture, it
recommends that a physical connection and hence the associ-
ated XAResource can participate in multiple transactions, but
at any point only one of these transactions can be active. To
ensure this, the start call first checks that the associated con-
nection isn’t running a local transaction nor is the XAResource
instance associated with an active transaction. Once assured,
it associates the passed XID with the XAResource instance and
activates the transaction. All work done henceforth on this
physical connection, until the transaction is suspended or
completed, accumulates against the active transaction.

The start call is accompanied by the following flags:
• TMNOFLAGS: Indicates that it is a new transaction. A call

to getTransactionState with flag true creates new entries
for the new transaction and initializes the instance.

• TMRESUME: Indicates a suspended transaction is being
resumed. A call to getTransactionState with flag false
means no new entries need to be made. The state of the
transaction is retrieved and the current instance is initial-
ized with that state. The state of the transaction is also
changed from SUSPENDED to NOT SUSPENDED.

• TMJOIN: A two-phase optimization, the TM, when it
detects that a particular RM instance is already participat-
ing in a transaction, instead of creating a new branch
decides to merge all work done on a single RM against a
single XID. By doing this it saves on running the two-phase
protocol on all branches separately. No new entries have to
be made and the state of the transaction remains through-
out NOT SUSPENDED (see Listing 5).

The application component calls commit to make the
effects of the transaction permanent. The TM first calls end
for each involved RM, from the AP’s thread of control, to dis-
sociate the thread from the global transaction. The TM then
executes the two-phase commit protocol.

STAGE 1 is the prepare stage or the voting stage. TM calls
prepare for each RM that was associated with the global
transaction. RMs express their readiness to commit the
transaction. A single negative vote ensures rollback. A pre-
pare attempt on a suspended transaction would throw back a
protocol exception. Similarly it throws back an exception,
albeit a different one, when the transaction has been marked
earlier for rollback due to internal errors. Prepare stage also
offers a two-phase optimization. A transaction that has not
changed the state of the RM doesn’t need to go through the
second phase if prepare returns XA_RDONLY (see Listing 6).

Stage 2 is the commit stage. If all RMs return success from
prepare, the TM records a decision to commit the transaction
and calls commit for each RM. The XA specification allows
for an optimization in this procedure. If the TM has dealt
with only one subordinate RM in the global transaction, it
can omit Phase 1 by directly calling commit with the
onePhase flag set to true (see Listing 7).

Deployment Process
Before we can start using the adapter, we need to deploy

it. All adapter interfaces, classes, native libraries, etc., along
with the Deployment Descriptor (DD), are packaged in a .rar
archive. In situations where multiple J2EE applications need
to share the XAFileConnector, it can be deployed directly into
an application server as a standalone unit. However, the
resource adapter module may also be bundled with a J2EE
application, if it is needed only by a single application.

The Deployment Descriptor provides a lot of information
to the container, including:
• General information such as name and version of adapter,

vendor name, licensing requirements, etc.
• Names of concrete classes for certain core interfaces; for

example, we have to provide the name of the class that
implements the ManagedConnectionFactory Interface.

• Information about the kind of support built into the
adapter. This allows the container to perform certain opti-
mizations. XAFileConnector offers full support for
XATransaction. No authentication support is needed as all
native calls to connect to the resource, i.e., the local file
system, are made in the current user’s context.

• Configurable properties that are dependent on the deploy-
ment environment. The property naming conventions follow
the JavaBean standard. XAFileConnector uses a property by
the name of workingFolder to store the name of the folder
where transaction logs of the running transactions are kept.
The deployer sets this property at the time of deployment by
invoking the corresponding setter method. The method
checks for the existence of the folder and sufficient access
permissions before returning (see Listings 8 and 9).

To be able to successfully deploy an adapter, a better
understanding of the deployment process is essential. We will
briefly walk through the responsibilities of the deployment
code and how it interacts with the adapter code.
• The deployment code looks at the DD to find out which

class implements the ManagedConnectionFactory
Interface. It dynamically creates an instance of the
same and configures properties on the instance.XAFile The
Connector uses only one property workingFolder as dis-
cussed earlier.

• In a managed environment the deployment code instantiates
a ConnectionManager specific to the container and obtains a
ConnectionFactory instance from ManagedConnectionFac-
tory, as shown in the following implementation:

public Object createConnectionFactory(ConnectionManager cxManager)

throws ResourceException

{

return new ConnectionFactoryImpl(this, cxManager);

}

Note how the ConnectionManager instance is
passed around while creating the ConnectionFactory.
The mechanism helps associate the two factories and
the ConnectionManager. The ConnectionManager is
the ConnectionFactory’s interface to the container.

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Figure 1 Implementation Model

Get a JViews Info Kit – Learn more, test drive an Eval.
Go to: jviews-info-kit.ilog.com or Call: 1-800-for-ILOG

Features, Performance and Control

© 2003 ILOG, INC. All rights reserved. ILOG and the ILOG logotype are registered trademarks, and JViews is a
trademark of ILOG. All other brand, product, and company names are trademarks of their respective owners.

Discover the ILOG JViews Graphics Components
You’re developing a sophisticated user interface for a desktop, applet or
servlet application – it needs to provide displays that go far beyond what
Swing and HTML offer. How can you be sure it will have the features,
performance, customization and scalability to enable your end-users to
make better more informed decisions, faster?

With ILOG JViews, you get comprehensive graphical libraries & tools,
resources, and maintenance services so you can focus on the
implementation, confidently completing your application in less time and
at less cost.

Quickly and easily build:
 Gantt and resource displays
 Graph layouts, diagrams, workflows
 Geographic map displays
 Realtime data charts
 Custom monitoring and control screens
 Network and equipment management screens

Get the
 complete picture
Get the
 complete picture

28 November 2003 www.JavaDevelopersJournal.com

• The deployment code then binds the ConnectionFactory
instance in the JNDI namespace from where it’s later
looked up by the application component.

Writing a Client
Clients needing to interact with the file system will have

to use the CCI interface. They cannot use the java.io package
to access the file system if they want the transactional sup-
port. While the approach may look nonintuitive and tire-
some, which in fact it is, it is not as big a pain as you would
imagine it to be.

By this time we would have understood how to acquire a
connection to the file system.
• Once connected we can obtain an interaction from the

connection.

Interaction interaction = conn.createInteraction();

Interaction maintains an association with the connection
from which it was created and executes on the same con-
nection.

• A connection object also serves as the source for
RecordFactory. RecordFactory hands out all types of
records. Records are the means of exchanging data, both
incoming and outgoing, with the files system.

RecordFactory rf = cf.getRecordFactory();

MappedRecord in = rf.createMappedRecord("IN");

MappedRecord out = rf.createMappedRecord("OUT");

• Assuming that we wish to create a file, the only parameters
we would need to pass are the folder name in which to
create the file and the file name. Initialize the records with
the input parameters.

in.put("SOURCE_DIR", "E:\\bea\\weblogic700\\FILES1");

in.put("SOURCE_FILENAME", "create.txt");

• Now the only information that needs to be passed is our
intention of actually creating a file. This is specified when
we instantiate an object of the class InteractionSpecImpl.

interaction.execute(new

InteractionSpecImpl(InteractionSpecImpl.CREATE), in, out);

• Handle the exceptions and examine the OUT record for
returned values.

• Close all open resources.

What Further?
The proposed draft connector specification makes provi-

sions for inbound communication through a Message Inflow
Contract and also includes a Work Management Contract.
The inclusion of the two would make it feasible for the
adapter to work as a poller.

The Work Management Contract would allow the adapter
to monitor folders for incoming files. The activity can be per-
formed by submitting work to the container. The contract
would save the adapter the task of creating its own threads
thus allowing the container to exercise better control over its
runtime environment.

The Message Inflow Contract would allow the adapter to
trigger action in the event of receiving a file. The situation
can be thought of as analogous to a JMS situation, with the
adapter instead of an MDB delivering messages by polling on
a folder instead of a queue.

Better concurrency control can also be built into the
adapter using the new improved I/O support found in newer
Java runtimes, 1.4 onwards.

References
• JTA specifications: http://java.sun.com/products/jta
• JCA specifications: http://java.sun.com/j2ee/

‘connector/download.html

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Sandip Mane is a senior techni-
cal specialist with Infosys

Technologies Ltd. and specializes
in WebLogic.

msandip@infosys.com

Ashish Garg is a
senior technical specialist with

Infosys Technologies Ltd. He has
more than four years of

experience in J2EE technologies.

ashish_garg@infosys.com

Listing 1

public void close() throws ResourceException
{
if (mConn != null)
{

mConn.sendEvent(ConnectionEvent.CONNECTION_CLOSED,
null, this);

if (localTransaction != null &&
localTransaction.inTransaction) {

localTransaction.rollback();
localTransaction = null;

}
mConn = null;

}
return;
}

Listing 2

public class FSInRecord extends HashMap
implements MappedRecord

{
static final String SOURCE_DIR

= new String("SOURCE_DIR");
static final String SOURCE_FILENAME

= new String("SOURCE_FILENAME");
static final String DESTINATION_DIR

= new String("DESTINATION_DIR");
static final String DESTINATION_FILENAME

= new String("DESTINATION_FILENAME");
static final String DATA

= new String("DATA");
static final String SIZE

= new String("SIZE");

public FSInRecord(String fileName,
String newName, String sourceDir,
String destinationDir, int size)

{
this.put(SOURCE_DIR, sourceDir);
this.put(SOURCE_FILENAME, fileName);
this.put(DESTINATION_DIR, destinationDir);
this.put(DESTINATION_FILENAME, newName);
this.put(SIZE, new Integer(size));

}
...
...
}

Listing 3

boolean execute(InteractionSpec ispec, Record input,
Record output) throws ResourceException
{
FSOutRecord out = (FSOutRecord)output;
FSInRecord in = (FSInRecord)input;

String sourceDir = (String)in.get(FSInRecord.SOURCE_DIR);
sourceDir = (sourceDir != null &&

sourceDir.endsWith(File.separator)) ? sourceDir :
sourceDir + File.separator;
String sourceFileName =

(String)in.get(FSInRecord.SOURCE_FILENAME);
String destDir =

(String)in.get(FSInRecord.DESTINATION_DIR);
destDir = (destDir != null && destDir.endsWith(File.sep-

arator)) ? destDir : destDir + File.separator;
String destFileName = (String)in.get(FSInRecord.DESTINA-

TION_FILENAME);
String destFile;

if((sourceDir == null) || (sourceDir.equals("")))
throw new ResourceException("Invalid File Directory");

if((sourceFileName == null) ||
(sourceFileName.equals("")))

throw new ResourceException("Invalid File Name");
String sourceFile = new String(sourceDir +

sourceFileName);

if(sourceDir.equals(workingFolder))

29November 2003www.JavaDevelopersJournal.com

throw new ResourceException("Invalid File Directory. It
can not be same as working folder directory.");

try
{
switch(((InteractionSpecImpl)ispec).getAction())
{
case InteractionSpecImpl.CREATE: {

File file = new File(sourceFile);
boolean success = file.createNewFile();
if(!success) throw new ResourceException("File could

not be created");

addWork(sourceDir, sourceFileName, null, null,
WorkItem.CREATE);

break;}

case InteractionSpecImpl.DELETE: {
destFileName = sourceFileName + new

java.util.Date().getTime();
destFile = new String(workingFolder + destFileName);
closeFile(sourceFile);

File destFileHandle = new File(destFile);
File sourceFileHandle = new File(sourceFile);
boolean status =

sourceFileHandle.renameTo(destFileHandle);
if(! status)
throw new ResourceException("File can not be delet-

ed");
addWork(sourceDir, sourceFileName, workingFolder,

destFileName, WorkItem.DELETE);

break;}

case InteractionSpecImpl.MOVE: {
if((destDir == null) || (destDir.equals("")))
throw new ResourceException("Invalid Destination File

Directory");
destFile = destFileName != null ? destDir +

destFileName : destDir + sourceFileName;

closeFile(sourceFile);

File destFileHandle = new File(destFile);
File sourceFileHandle = new File(sourceFile);
boolean status =

sourceFileHandle.renameTo(destFileHandle);
if(! status)
throw new ResourceException("File can not be moved");

String renameTo = destFileName != null ? destFileName
: sourceFileName;

addWork(sourceDir, sourceFileName, destDir, renameTo,
WorkItem.MOVE);

break;}
...
...

}
}
catch(IOException ie)
{
throw new ResourceException(ie.getMessage());

}
return true;

}

Listing 4

public WorkItem(String sourceDir, String sourceFile,
String destinationDir, String destinationFile, int
workName, ManagedConnection mConn) {

this.workName = workName;
this.sourceDir = (sourceDir.endsWith(File.separator)) ?

sourceDir : sourceDir + File.separator;
...
...

}

public void executeCommit() throws ResourceException {
switch(workName) {
case CREATE: break;
case UPDATE:
case DELETE: //delete the backed up file
String fullNameWithPath = new String(destinationDir +

destinationFile);
File toBeDeleted = new File(fullNameWithPath);
closeFile(fullNameWithPath);
if (!toBeDeleted.delete()) throw new

ResourceException("Clean Failure: failed to delete ... " +
toBeDeleted.getPath());

break;
case MOVE: break;

}
}

Listing 5

public void start(Xid xid, int flags) throws XAException {
if (mConn.localTransactionCCI != null) {
throw new XAException(XAException.XAER_OUTSIDE);

}
activate(xid);
BitSet states = null;

switch (flags) {
case TMNOFLAGS:
states = getTransactionState(associatedXID, true);
break;

case TMRESUME:
states = getTransactionState(associatedXID, false);
states = updateState(states, SUSPENDED, false);
break;

case TMJOIN:
states = getTransactionState(associatedXID, false);
break;

}
XIDStates.put(associatedXID, states);

}

Listing 6

public int prepare(Xid xid) throws XAException {
BitSet states = getTransactionState(xid, false);
boolean suspended = currentState(states, SUSPENDED);
boolean markedForRollback = currentState(states,

MARKED_FOR_ROLLBACK);
boolean readOnly = currentState(states, READ_ONLY);

if (suspended) {
throw new XAException(XAException.XAER_PROTO);

} else if (markedForRollback) {
throw new XAException(XAException.XA_RBOTHER);

} else if (readOnly) {
return XA_RDONLY;

}

states = updateState(states, PREPARED, true);
XIDStates.put(xid, states);
return XA_OK;

}

Listing 7

public void commit(Xid xid, boolean onePhase) throws
XAException {

BitSet states = getTransactionState(xid, false);
boolean prepared = currentState(states, PREPARED);
if (!onePhase) {
if (!prepared) {
throw new XAException(XAException.XAER_PROTO);

}
}

ArrayList workList = (ArrayList)XIDWork.get(xid);
executeActionsList(workList, true);
removeTransationHistory(xid);

}

Listing 8

public void setWorkingFolder(String workingFolder)
{

if (workingFolder == null ||
workingFolder.equals("")) throw new
RuntimeException("Invalid value for Working folder in the
Deployment Descriptor.");

File workingDir = new File(workingFolder);
if (!workingDir.isDirectory()) throw new

RuntimeException("Working folder specified is not a valid
Directory.");

if (!workingDir.canWrite()) throw new
RuntimeException("Working folder specified does not have
write permissions.");

this.workingFolder = workingFolder;
}

Listing 9

public void setWorkingFolder(String workingFolder)
{

if (workingFolder == null ||
workingFolder.equals("")) throw new
RuntimeException("Invalid value for Working folder in the
Deployment Descriptor.");

File workingDir = new File(workingFolder);
if (!workingDir.isDirectory()) throw new

RuntimeException("Working folder specified is not a valid
Directory.");

if (!workingDir.canWrite()) throw new
RuntimeException("Working folder specified does not have
write permissions.");

this.workingFolder = workingFolder;
}

30 November 2003 www.JavaDevelopersJournal.com

aving ridden the storm of the dot-com
decline, it’s nice to see the worldwide
press having a semi-upbeat tone about
the tech economy. Java, as a language,
rode the crest of the wave; it could do
no wrong and Java developers were the
geeks among geeks. We now sit and
watch the ups and downs of our indus-
try; we watch the continual bickering
and arguments that crop up. There are
times I actually question why I do any
of this coding/consulting thing at all.

Recently I found myself stuck in a
rut, doing the commute, doing the job,
and going home. I’d died on the inside
and didn’t know which way to turn. I
was enjoying programming but I felt it
had no real value. Now I don’t really
hear developers talk about this sort of
thing at all and there seem to be
shocked faces when someone leaves an
organization, like Bill Joy leaving Sun,
for example.

I was faced with some choices. I
could stay and continue with my work,
stay but change my role, leave and
move onto something similar to what I
do, or, the real risky alternative, leave
and do something completely different.
It’s easy to dream a dream but it’s
another thing to step out and do it, so
with the support that I needed around
me I handed my notice in.

Now I don’t advise everyone to do
what I did, but there comes a time
when you have to look at your desk and
ask yourself, “Am I really fulfilling my
potential here?” For me the reality was
that I was not and it was time to go.

The apostle Paul spent a lot of time
encouraging Christians and the Church
to go that extra step in their conduct. As
Java programmers we have to encour-
age each other and the groups that we
belong to (user groups, blog communi-
ties, IRC, and mailing lists). Continually
ask yourself how you can improve your
skills, programming attitude, and busi-
ness conduct. Java is a life lesson; how
do you think you are getting on?

I got hold of a couple of books,
Change Activist and Soultrader by
Carmel McConnell, that discuss how to
take control of your working and per-
sonal lives and do something with

them. They were an eye opener and
made me realize that I was doing the
right thing by moving on.

The next step is to think big. Not just
a little bit more than what you already
have, but big, way beyond your comfort
zone. I’m sure there are people at Sun
who walk around dreaming up all sorts
of stuff that never sees the light of day.
It doesn’t stop them; the chance of
developing that one thing that might
make it is enough for them to carry on.

I am not going to compare Java to
Christianity but there are some paral-
lels. We have to stay focused on what is
close to our hearts. Nehemiah was con-
stantly disrupted from building the wall
in Judah. Even when the laborers were
weak, they continued building. Though
the dot-com boom ended, the develop-
ers kept building.

Christians mature in their work; so do
developers. Constant learning, empow-
ering, and encouraging is vital to the
growth of the Java language, and the
development of the application server
and associated tools. We all have our part
to play and watching public blog beat-
ings only fills my heart with dismay as I
watch the others who are trying to write
more tools, and encourage and empower
us to create more powerful applications.

I’m really excited about the next wave
of applications, sites, and mobile devices
and how Java fits in all that. I’m excited
about getting out in 2004 and hopefully
meeting some folks in the Java world.

As we near 2004, here are a few ques-
tions to ponder:
1. Are you really happy with what you

are doing?
2. If not, what are you going to do to

change it?
3. If not, when are you going to change

it?
4. How are you going to prevent it from

happening again?

Regardless of everything you read on
forums, Java is a top-class language. It
runs fast and does the job wonderfully.
Now let’s get together as a body of
developers who, with one voice, can
show the world what this language can
really do!

Lift Your
Vision Higher!

H

J2SE INSIGHT

I Love Logging!
Having rode the

storm of the-dot com decline, it’s

nice to see the worldwide press

having a semi-upbeat tone about

the tech economy. Java, as a lan-

guage, rode the crest of the

wave; it could do no wrong and

Java developers were the geeks

among geeks.

Using Java Generics
Have you heard? Generics

will be in the next release of the

Java SDK (code named Tiger aka

JDK 1.5). A concept similar to

generics was included in C++,

i.e., templates. Although the syn-

tax of Java generics is modeled

after C++ templates, the Java

syntax is easier to understand.

An Interview with
Bruce Eckel

Recently, Jason Bell had the

opportunity to talk with Bruce

Eckel, noted author of Thinking

in Java and Thinking in C++.

Jason Bell is the senior program-
mer for a B2B portal. He’s also a

keen supporter of people read-
ing the API docs before asking

questions. In his spare time he’s
involved with building RSS

development tools.

jasonbell@sys-con.com

30

38

J2
SE

32

Jason Bell
J2SE Editor

J2
SE

H
O

M
E

J2
E

E
J2

M
E

42MIDI and Audio
Sequencing

with Java

32 November 2003 www.JavaDevelopersJournal.com

Using Java Generics
Create more flexible classes

H

PARAMETERIZED TYPES

J2
SE

H
O

M
E

J2
E

E
J2

M
E

ave you heard? Generics will be in the
next release of the Java SDK (code
named Tiger, aka JDK 1.5). You might be
wondering “What is a generic?” or “Why
should I care?” or even “Cool! How do I
use them?” This article will introduce
generic coding, explain how generics
are used and what their advantages are,
and discuss how they will impact your
work. To help you understand, I’ll
define generics and code a few exam-
ples to illuminate how to use them.

Generics are not a feature that every-
one has used. A concept similar to
generics was included in C++, i.e., tem-
plates. Although the syntax of Java
generics is modeled after C++ tem-
plates, the Java syntax is easier to
understand. In addition, the implemen-
tation of templates and generics are not
the same. Java remains type safe and
doesn’t expose source code when sup-
porting generics. In other words, Java
adds the power of generic coding with-
out many of the problems found in
other language implementations.

What Are “Generics”?
Generics are known by another

name that makes more sense to the
average coder. They’re also called
parameterized types. Using parame-
terized types allows you to define a
more flexible typed class or parameter
so you get more type-checking sup-
port from the compiler. They solve one
of the most annoying things in Java
coding – the constant conversion of
object references to a more useful ref-
erence type. This problem is especially
prevalent when using collections of
objects.

To start learning how to use gener-
ics, we’ll look at some collections-
based examples and see what the
advantage is.

Generic Examples
When working with any collection

type, you’re working with an object
that can store objects, right? Actually
you’re working with an object that can

store java.lang.Objects, but we don’t
need to be picky. If you look at Listing
1 you can see that every time you want
to access an object in an ArrayList, you
need to cast that object type. This list-
ing is a remedial example of the need
to cast all objects returned from an
ArrayList. In this case nothing is done
with the returned string, but it must
be cast in order to access its string
functionality.

In comparison, when using generics
your code would look a little different
(see Listing 2). Instead of creating an
ArrayList reference, create an ArrayList
reference to an ArrayList that can hold
only strings (lines 9 and 10, Listing 2).
The compiler will only allow strings to
be added to this ArrayList, so any
attempt to add objects of any type that
is not a string will generate a compiler
error. In addition, when you retrieve
any value from the ArrayList, it’s
returned as a string so no cast is need-
ed (line 14, Listing 2).

The collections you’re familiar with in
JDK 1.4 have been rewritten in 1.5 to
handle generics. The good news is you
won’t have to fix or convert your exist-
ing code. Existing code will work with
no changes in most cases. In fact you
can still use the old form of all your
favorite collections, but I’m not sure
why you would, unless you’re stuck on
pre-1.5 Java.

Why Do We Need Generics?
We don’t really need them, but they

add to the language and provide dis-
tinct benefits. Using generics reduces
the need to cast references back to
the actual types of the object, one of
the ugliest little code snippets in all of
Java. As a bonus, the frequency of
ClassCastExceptions should be
reduced because the compiler will
catch type errors, and the need to
surround casts with “if (o instanceof
)” is also gone. Errors caught by the
compiler are a good thing; runtime
exceptions are not as good. The addi-
tion of parameterized types allows

you to create code that is geared to
collections of objects of a single spe-
cific type.

The following code demonstrates
how a method can expect a collection of
Integers, not just a collection. The
author of this method doesn’t need to
check type or cast, and the code is
cleaner because of this. This static
method filters all values larger than a
given cap out of any given collection of
Integers.

public static void capList

(Collection list, int cap)

{

Iterator itor =

list.iterator();

while (itor.hasNext()){

if(itor.next().intValue() > cap){

itor.remove();

}

}

}

Notice there’s no need for the
author of this method to cast Object
to Integer; the compiler will take care
of it. The author of the code defines
what type of collection can be used. If
a user of this method attempts to pass
the wrong type of object, it will be
refused by the compiler, giving a “can-
not be applied” compiler error. The
code below, written to invoke the
“capList()” method, contains the com-
piler error.

LinkedList list3 =

new LinkedList();

list3.add("8");

//The next is a compiler error

capList(list3, 30);

Rewriting the same method without
a generic collection would require you
to cast each element retrieved from
the collection. This in itself is not terri-
ble (heck, we’ve been doing this in
Java for quite a while), but the generic
example is cleaner. The version that
includes generics is cleaner and the

Steve Close

©
20

03
 B

E
A

S
ys

te
m

s,
 In

c.
 B

E
A

an
d

W
eb

Lo
gi

c
ar

e
re

gi
st

er
ed

 tr
ad

em
ar

ks
 a

nd
 B

E
A

W
eb

Lo
gi

c
W

or
ks

ho
p

is
 a

 tr
ad

em
ar

k
of

 B
E

A
S

ys
te

m
s,

 In
c.

 A
ll

ot
he

r c
om

pa
ny

 n
am

es
 a

nd
 m

ar
ks

 a
re

 tr
ad

em
ar

ks
 o

f t
he

ir
re

sp
ec

tiv
e

ow
ne

rs
.

So why spend so much time on mindless coding?

Download WebLogic Workshop Now.
BEA WebLogicW orkshopTM 8.1is a more efficient way to develop in J2EE.

And that means less grunt work and more real work. dev2dev.bea.com/cerebrum.

36 November 2003 www.JavaDevelopersJournal.com

PARAMETERIZED TYPES
J2

SE
H

O
M

E
J2

E
E

J2
M

E

methods declaration indicates to the
user of the method what is expected as
a parameter. The code itself, rather
than documentation, leaves little
question regarding what the collection
can contain.

For comparison, the same method is
included below without the addition of
generics. Notice the cast in the if-state-
ment and the use of instanceof to
check the type before using it as an
Integer.

public static void capList

(Collection<Integer> list, int cap){

Iterator<Integer> itor = list.iterator();

Object o = null;

while (itor.hasNext()){

o = itor.next();

if (o instanceof Integer &&

((Integer)o).intValue() > cap){

itor.remove();

}

}

}

Most of the generics changes that
your average Java programmer will see
are in the collections API and in
extending those collections. The collec-
tions become easier to use and the
compiler supports typing, as we saw
above. Gone are the days when you cre-
ated your own collection type to hold
only one type of object; generics makes
that code unnecessary.

The way generics change collections
is not the end of the story. Code design-
ers will be using generics to make code
more flexible in more than just collec-
tions. If the generics change had only
changed collections, Java would have
been better off adding a dynamic array
type.

You’ll also be able to work with gener-
ics in your own code. The syntax is new
to non-C++ converts, but it’s simple to
work with. As an example we’ll create a
class that has a parameterized (generic)
property, a property that can be of any
type. The class in Listing 3 is a standard
JavaBean with a getter and setter, but
the author of this class doesn’t need to
know what type is being stored. The
property type is generic, so the author
has inserted a < > after the class name.
In this < > notation is a variable type
name; it needs to be a valid Java identifi-
er or a comma-separated list of valid
identifiers. After assigning a Java identi-
fier between the < >’s, you can use that
type name in your class the same as any
other type name. The actual type that it
will be is defined by the user of the code
in Listing 3.

When the client creates the bean, he
or she will instruct it to hold some
object type. From that point on the
compiler will make checks for type
safety; for example, when one is creat-
ed with the following statement:

GenericBean<String> bean = new GenericBean;

After the reference to the GenericBean
is defined as holding strings, the compil-
er will allow only strings to be sent into
the setter, and the getX() method will
always return a string. This flexibility and
type safety adds up to easier code to
write and to read.

Generics Issues
Generics represent a fundamental

addition to Java syntax. Changes at
such a low level do not come for free.
Unlike adding new APIs or adding fea-
tures to JDK back in the day, this
change will need to be compatible with
millions (billions?) of lines of code.
There are a lot of existing Java applica-
tions and the switch to Tiger might
cause a few errors in your existing Java
code.

In a recent JavaOne technical
talk, Gilad Bracha (lead of JSR 14)
predicted that one out of every
million lines of code will have
compiler errors. This prediction
was based on the two errors found
when compiling the 2+ million
lines of code in the JDK. For my
business 1 in a 1,000,000 seems
pretty trivial, but I don’t have
5,000,000 lines of mission-critical
legacy Java to support.

The JCP expert group for generics
worked hard to minimize the impact
the addition of generics can cause.
Because compatibility was a design
constraint, a few annoying features
have been accepted into generics,
including new type casting possibili-
ties. Specifically, you can still get class
cast exceptions when working with
generics. This is possible because a
reference to a type can be stored in a
reference that doesn’t appear to be
parameterized. Whoa, that might
sound a little better in code. The fol-
lowing example shows an ArrayList
stored in an ArrayList reference. The
new reference to the array list called
list5 allows you to add non-strings to
the ArrayList.

//This snippet will compile fine

ArrayList<String> list4 =

new ArrayList<String>();

list4.add("Steve");

ArrayList list5 = list4;

list5.add(new Object());

list4 = list5;

This issue can’t be fixed because it’s
needed to make the new collections
backward compatible with any code
previously written, but it can cause
trouble. Another way to put it is “It’s the
better of two imperfect options.” The
compiler allows this change, even
though it will most likely cause a
ClassCastException. This situation will
probably occur rarely, typically when
you’re changing existing code that’s
used by other parties, but the problem
exists. The compiler will inform you
that you might have an issue by send-
ing a warning. If you compile with the
-warnunchecked flag, it will provide
details. The above snippet produced
the following warnings.

Steve Close has been
working as a Java con-

sultant and trainer
since 1997. He has

authored seven popu-
lar workshops for

Intertech on topics
ranging from Complete

Java Programming to
Expert J2EE Patterns.

He served as president
of the Twin Cities Java

Users Group from 1997
to 2000.

sclose@
intertech-inc.com

Listing 1

1 package example1;
2
3 import java.util.ArrayList; 4
5 public class OldCollection{ 6
7 public
8 static void main(String[] a){
9 ArrayList strLst =
10 new ArrayList();
11 strLst.add("hello");
12 strLst.add("goodbye");
13 //...
14 //Object reference
15 String strFromList =
16 (String)strLst.get(1);
17 }
18 }

Listing 2

1 package example1;
2
3 import java.util.ArrayList;
4
5 public class UseGenerics{
6
7 public
8 static void main(String[] a){
9 ArrayList<String> strLst =
10 new ArrayList<String>();
11 strLst.add("hello");
12 strLst.add("goodbye");
13 //...
14 String strFromList =
15 strLst.get(1);
16 }
17 }

Listing 3

1 class GenericBean<VarType>{
2
3 private VarType x;
4
5 public GenericBean(){}
6 public GenericBean(VarType x){
7 this.x = x;
8 }
9
10 public VarType getX(){
11 return x;
12 }
13 public void setX(VarType x){
14 this.x = x;
15 }
16 }

37November 2003www.JavaDevelopersJournal.com

warning: unchecked call to add(E) as a mem-

ber of the raw type java.util.ArrayList

list5.add(new Object());

warning: unchecked assignment:

java.util.ArrayList to java.util.ArrayList

list4 = list5;

Another annoying feature is the limi-
tation on types. Generic types don’t
support primitives. You still can’t make a
collection hold int, char, or any of the
primitives. The following code would
fail to compile.

//This doesn't work ArrayList<int> intArray

= new ArrayList();

The annoyance here is an old one.
Java separated out primitives from
objects to improve performance and
that’s a good thing, but it also forces
developers to learn about “wrapper”
types. If you want to store primitive ints
in a collection, put them into
java.lang.Integer objects.

I mention this annoyance because
I hope that JSR 201 will be included
in JDK 1.5, which would allow you to
ignore the wrapper classes with the
automatic “boxing” of types. If you
want to give it a try, the code for box-
ing in Java appears below. Notice
that the ArrayList type allows you to

add ints without making Integers.
The Integer is created behind the
scenes. Boxing is a feature of C# and
VB.NET that makes me just a little
jealous, but they don’t have generics
yet.

LinkedList list2 =

new LinkedList();

list2.add(8);

list2.add(43);

list2.add(4);

Trying It Out
If you want to try out generics, you

don’t have to wait for Tiger. A refer-
ence implementation is available now
that works with JDK 1.4.1. This imple-
mentation isn’t difficult to use or set
up. To get it going you’ll need a little
knowledge and two downloads. You
need JDK 1.4.1, not JDK 1.4. You can
find it at http://java.sun.com; down-
load and follow the installation direc-
tions. You’ll also need an implementa-
tion of the generics compiler and the
new definitions for the collections.
These are contained in a zip file called
adding_ generics-2_0-ea. zip, which
can be downloaded from Sun at
http://developer.java.sun.com/ devel-
oper/early Access/addinggenerics/
index.html.

Finally, you’ll need to register as a
member of the Sun Developer
Network. Joining is painless. After
downloading the zip, unzip it to a fold-
er. I downloaded it onto my Windows
box and unzipped it to c:\java. The zip
contains a folder named “adding_
generics-2_0-ea” that I’ll call
JSR14HOME when describing the com-
mands needed to compile and run
your generics examples. The generics
download contains JSR 14 features
(Generics) as well as JSR 201 features
(enumeration, boxing, static imports,
and the “for-each” enhancement).
Sample code is included as well as the
source code for many of the changes to
existing collections. There is a .bat file
to help compile in the scripts directory,
but I wrote my own because it was
untested and required adding environ-
mental variables I would never use
again.

When compiling you need to include
a few extra arguments for javac. The fol-
lowing is the javac statement I used to
compile. JSR14HOME refers to the loca-
tion of your adding_generics-2_0-ea
folder and the JDK141Home is the
Java_Home directory for an install of
the JDK version 1.4.1.

–continued on page 60

38 November 2003 www.JavaDevelopersJournal.com

ecently, Jason Bell had the opportunity
to talk with Bruce Eckel, noted author of
Thinking in Java and Thinking in C++.

JDJ: Thanks for taking the time to talk
with us. I know you’ve recently had some
seminars in Prague. Do you think
European programmers differ from
American programmers?
Bruce Eckel: That’s very difficult to say,
since I believe we tend to get a special
group of programmers at the seminars
there. Even though we offer the semi-
nar at lower prices, it’s still expensive
and as a result those who do come
seem to be the exceptional ones. They
tend to be outstanding, but I assume
there are other factors involved.

JDJ: Do you have any comments on the
new additions to the JDK 1.5?
Eckel: I assume you mean the features
that mimic those in C#. I’m very glad to
see those, because it means that the
Sun Java folks are no longer saying “you
don’t really want those things.” Instead,
they’re stepping up to the competition
right away, which is very promising. I
was very skeptical about C# at first, but
when I examined it more closely I real-
ized it was a well-designed language.

JDJ: I know you use a number of lan-
guages, but which one would you sug-
gest for beginners who want to learn
object orientation?
Eckel: Python. It’s the perfect beginner
language, and it’s built on objects from
the ground up, so it’s easy to learn to
use objects with the language. Unlike
Java or C++, there’s very little ceremony
required, so you don’t get distracted by
weird artifacts and can focus on the
essence of objects and programming.

Then if you want to move to Java or
C++, the concepts translate nicely and
you can easily see what the object’s
essence is in that language and which
are the language artifacts. And you can
continue using Jython in various ways
for your Java development. Also, there’s
Boost.Python to make it easy to talk
back and forth between Python and
C++

JDJ: I’ve spoken to a lot of programmers
over the years and I’ve heard nothing
but praise for Thinking in Java. Are you
surprised by its success?
Eckel: I guess I am. I’ve been writing
books so long that I don’t expect them
to necessarily do that well (first-time
authors often expect to retire on book
royalties, but after you’ve done it awhile
you discover that a “successful” book in
the publisher’s eyes is often just one
that pays back its advance). But since
Thinking in C++ (when I started using
automated code testing tools to vali-
date the code in the book, in 1995) I
also expected that everybody would
naturally start using automated testing
tools for their book code. At this point,
I’ve still met only a couple of authors
who do it. Also, I follow John Irving’s
maxim: “Writing is rewriting.” But that’s
pretty much all I do – make sure my
code works and rewrite a lot. As a result
of rewriting, I find a lot of things in the
books that I consider embarrassing, so
I always think they could be a lot better.

JDJ: Do you offer the code updates on
your Web site?
Eckel: Yes. The code and the HTML ver-
sion of the book is available for free
download from www.MindView.net.
There aren’t a lot of changes between

versions of the book, but if I do make
any changes I post them on the site.

JDJ: I notice you have a Web log.What
made you decide to run one? Do you get
time to read any other programming blogs?
Eckel: If you go to the first Web log at
http://mindview.net/WebLog/log-0001,
titled “The origin of this Web log,” that
will answer your first question. Bill
Venners got me started, and even though
I didn’t end up writing on his site, I still
follow his logs a bit. He’s amassed quite a
collection of quality Web loggers, and he
focuses on programming.

For years I’ve read Elliotte Rusty
Harold’s “Cafe Au Lait” Web site
(www.cafeaulait.org), which is kind of
like a Web log for Elliotte but better –
it’s daily and he hunts for interesting
articles, so it’s as if he’s filtering the Web
for me, especially Java stuff. I rely pretty
heavily on the Elliotte-bot to keep track
of the interesting stuff. I occasionally
read some columnists, like Cringely
(www.pbs.org/cringely) and Joel
Spolsky (www.JoelOnSoftware.com),
and www.pcmag.com columnists. But
these are when I’m killing time. Usually
when I’m at the computer I try to get
something done.

JDJ: In one of your blog entries it said
“If it’s not tested, it’s broken.” Do you
have any words that would encourage
nontesting programmers to test their
code?
Eckel: That’s actually a quote from
Thinking in Java, 3rd edition. There’s a
section in Chapter 15, “Discovering
Problems,” that attempts to convince
people of the value of testing. Also, the
talk I give to user groups lately is about
testing (unit testing and design by con-
tract, also in TIJ3). But in general it
seems to be a personal epiphany that
each programmer must have, when they
suddenly see that automated unit test-
ing saves them a lot more time than it
costs. This happens when you change
something in your code and your unit
tests suddenly find a lot of bugs that you
know wouldn’t have shown up for a long
time otherwise. That’s convincing – after
that, you can’t imagine doing without.

An Interview
with Bruce Eckel

Interviewed by
Jason Bell

R

Q & A

J2
SE

H
O

M
E

J2
E

E
J2

M
E

If you want to move to Java or C++,
the concepts translate nicely and you

can easily see what the object’s
essence is in that language”

Bruce Eckel
(www.BruceEckel.com) is the

author of Thinking in Java
(Prentice-Hall), the Hands-On
Java Seminar CD ROM (avail-

able on his Web site), and
Thinking in C++ (PH), among
others. He’s given hundreds
of presentations throughout

the world, published over 150
articles in numerous maga-

zines, was a founding mem-
ber of the ANSI/ISO C++ com-
mittee, and speaks regularly
at conferences. He provides
public and private seminars

and design consulting in C++
and Java.

“

© 2003 Zero G Software, Inc. Zero G, Zero G Software, and InstallAnywhere are trademarks or registered trademarks of Zero G Software, Inc. All other trademarks are property of their respective owners.

Why do industry leaders

choose Zero G?

Because partnerships aren’t a catch phrase at Zero G - they are our liveli-

hood. We know that our success depends on yours.Whether you’re a sin-

gle-product developer or a multi-national corporation, we deliver the most

innovative, scalable software deployment solutions in the industry -

InstallAnywhere® and PowerUpdate®. But, more importantly, we deliver a

team of skilled professionals who are committed to the partnership that

starts the minute you download one of our products.That’s why industry

leaders like Sun Microsystems, Novell and Borland choose us.

Your software deployment partner

www.ZeroG.com

40 November 2003 www.JavaDevelopersJournal.com

JDJ: Are there any books you can recom-
mend (apart from your own) that have
been a help to you?
Eckel: Design Patterns, of course; despite
its problems it’s still a major learning
experience. Gerald Weinberg’s Secrets
of Consulting is a must, as is
Peopleware by DeMarco and Lister
(2nd edition, and they just came out
with a new book, Waltzing with Bears,
that I’m sure is good). Effective C++
and Effective Java have both been quite
helpful. I finally understood network
programming from Elliotte Rusty
Harold’s Java Network Programming.
Learning Python, The Python Standard
Library, and The Python Cookbook are
all great. Core Java has always been
helpful as a resource. Some of the
Extreme Programming books have
been good. I generally like Robert
Glass’s books for their irreverence
about software development. A lot of
Martin Fowler’s writing is quite helpful.
That’s all that I can get from skimming
over my bookcase.

JDJ: With everything you do, do you have
time for any non-work activities?
Eckel: Definitely. That’s one of the main
points of working for myself – the
freedom to take time off and do other

things. One of the activities I enjoy a
lot when I’m here in Crested Butte,
Colorado, is mountain biking. I’m
competent in that I can cover the ter-
ritory (sometimes that means walking
the bike) but it’s excellent exercise
and a great way to be outside. Also
hiking, since the mountains are beau-
tiful here. I usually take people on
hikes when they come up here for
seminars.

Also, on a lark I just tried out for a
local play here, however, I don’t know if
I got the part, but it turns out it was a
lot of fun just to read for it.

JDJ: What do you have planned for the
remainder of 2003?
Eckel: We aren’t doing that many public
seminars since people haven’t been
that keen to travel, and the economy
has definitely impacted training budg-
ets (although I have seen some small
indications that this trend has at least
bottomed out, if not slightly turned
around). I suspect we’ll have at least
several in Crested Butte before the end
of the year, but the rest of the time I
will be working on books (finishing
C++, Volume 2, starting a new book
that I haven’t announced yet) and the
“Hands-On Java CD ROM,” finishing

the solution guide for the
third edition. I also hope to
set up a simple studio to
create video training media,
which is something I’ve
been pursuing on and off
since I worked on The World
of C++ and Beyond the World
of C++ many years ago for
Borland (see http://mind-
view.net
/WebLog/log-0029 for
details). Especially with peo-
ple not traveling and with
budgets the way they are, it
seems as if CDs and videos
are a great way for people to
learn now.

Also, I’ve been doing
audio interviews with various
luminaries in the software
world that I plan to make
into an MP3 CD for people to
listen to while they drive
(with the new inexpensive
MP3 players) or on their
computers. These interviews
have been quite interesting
so far; I’m going for the NPR
“Fresh Air” kind of feel.
They’ve also been fun to do,
which I think is a good sign.
JDJ: Dare I ask which lumi-

naries you have interviewed? Just as a
teaser…
Eckel: I’m going for a spectrum of people
involved in different aspects of creat-
ing software. Not everyone is well
known. Some are book authors like
Dave Thomas, Andy Hunt, Joshua
Bloch, and Ron Jeffries. Chuck Allison
wrote a C/C++ book and is coauthor-
ing Thinking in C++, Volume 2 with me,
but his focus is teaching so we talked
about the education necessary for
good software engineers. Guido Van
Rossum created the Python language
and Jim Fulton created the Zope appli-
cation server. Gene Wang used to be VP
of languages at Borland, and is now
president of a company that makes
cellphone software, so we mostly
talked about management. Daniel Will-
Harris is a designer (he does my book
covers) and has consulted on the user
aspects of software; we discussed, from
the user’s perspective, the kinds of
things that software designers need to
do in order to create better software.

There are others that I hope to add,
and I also hope to continue doing
interviews and creating CDs like this
because I’m having fun doing it. And
the questions I asked were things that I
found interesting, so I think the inter-
views themselves will be quite enjoy-
able to listen to.

JDJ: You mentioned MP3s; do you listen
to any music while you’re coding?
Eckel: No, I’m not the kind of person who
can usually listen to music and do com-
plicated mental stuff at the same time. I
had a college roommate who could only
study with headphones and music, and
I could never figure it out. On the con-
trary, I prefer things as silent as possi-
ble, and my father (a master craftsman
in wood) just finished building me a
desk for use here in Crested Butte that
has a sound-insulated cabinet for the
CPU box. Since my new computer is
very quiet, the combination of the two
should be completely silent.

I am interested in some of the new
MP3 technologies, however. In particu-
lar, stand-alone systems that hook into
your stereo. Maybe if I master a system
like that, I’ll experiment with listening
to music while writing and see what
happens.

JDJ: Bruce, once again, thank you for
taking the time to talk to us.
Eckel: Well, I think it has helped kick start
me back into my own writing. This was
the easiest project (talking about
myself) that I had on my desk.

Q & A
J2

SE
H

O
M

E
J2

E
E

J2
M

E

he Java Sound API, first introduced in

J2SE 1.3, includes the package

javax.sound.midi, which contains

everything you need to be able to

send and receive messages to and

from any MIDI device visible to your

operating system.

 with java

MIDI
 audio sequencing

&
by Mike Gorman

42 November 2003 www.JavaDevelopersJournal.com

J2
SE

H
O

M
E

J2
E

E
J2

M
E

43November 2003www.JavaDevelopersJournal.com

44 November 2003 www.JavaDevelopersJournal.com

The Java Sound Programmer Guide and the Java Sound
Demo, both available for download from Sun, are excellent
references that illustrate all the “nuts and bolts” of sending
and receiving messages. This article provides a brief overview
of working with the MIDI and sampled audio primitives of the
Java Sound API, and then explores using those primitives to
construct a basic multi-track MIDI/audio sequencer in Java.

Programming with MIDI
Basically, every message you send to or receive from a

MIDI device is one or more bytes. The first byte is referred to
as the “message” or “status” byte. This is essentially the “com-
mand” (e.g., note on, note off, change patch, set volume, etc.).
The specific command you are sending or receiving will deter-
mine what the next byte or bytes are, if any. Having an online
MIDI specification reference available will be indispensable.

The first step is to obtain a reference to the specific
MidiDevice you want to talk to. The javax.sound.midi.
MidiSystem is your gateway to everything that Java Sound
was able to detect was installed in your operating system.
You might display a list of available devices to users and let
them choose which device they want to use (see Listing 1).

Once you have a reference to your MidiDevice, you’re
ready to begin sending and receiving messages. The first step
is to understand that there are Receivers and Transmitters. As
you might suspect, Receivers receive MIDI messages and
Transmitters transmit or are the source for MIDI messages.

Step one is finding out which MidiDevices the MidiSystem
is reporting. The easiest way is to iterate through each one, try
to play “middle C,” and see what happens. You may find that
some of the MidiDevices are configured as receive only, oth-
ers are transmit only, and others might receive and transmit.
In my setup, my MIDI interface reports two different
MidiDevices for the same keyboard – one that is transmit
only, the other that’s receive only. So when I want to send a
MIDI message, I send it to the MidiDevice that is receive only,
and when I want to record MIDI messages that I trigger by
playing the keyboard, I do it by listening to the MidiDevice
that’s configured to transmit only (see Listing 2).

Step two is to figure out which of the MidiDevices are
transmitters. In this case, you’ll need to create an implementa-
tion of the javax.sound.midi.Receiver interface (see Listing 3).

Next, figure out which of the available MidiDevices are
acting as your keyboard’s transmitter by trying them out one
at a time. Obtain each MidiDevice’s “transmitter,” assign your
receiver to it, play a few notes on your keyboard, and look for
output in the console that indicates you’ve found the right
“transmitter” device (see Listing 4).

Once you’ve figured out which MidiDevice is your receiv-
er and which is your transmitter, and you know the basics of
sending and receiving MidiMessages, you now have every-
thing you need to create your own full-featured 16-track
MIDI sequencer! Well, not quite…

Creating Your Own MIDI Sequencer
As I soon found out, there’s a lot more to creating a

sequencer than just knowing how to send and receive MIDI
messages.

You may have noticed by now that the javax.sound.midi
package already includes a class Sequencer. Unfortunately,
this “built- in” sequencer is limited in its capabilities and is
not extendable since it’s an interface. But the biggest reason I
was unable to use it is that it seems to be “hard wired” to use
the internal Java synthesizer (Sun Bug ID 4783745). It also
appears to have very bad timing problems (Sun Bug ID
4773012).

With the API it’s easy to create your own sequencer. First
we have to be able to record a single track and play it back in
the exact same timing it was originally played in. Moreover,
the performing artist (that’s you) will want to have a four-bar
metronome count off prior to recording start, then, to keep
perfect time, you’ll need to continue the metronome until
the user clicks stop. Of course, the metronome sounds
should not be part of the performance when it’s played back.

You can have the computer emit a “system beep” for your
metronome, but I prefer to listen to the hi-hat of a drumkit
on the keyboard. A lot of sequencers use MIDI channel 10
(i.e., track 10) as a drumkit, but you can choose any one you
like. A tempo of 120 beats per minute (bpm) means 2
beats/second or 1 tick of your metronome every 500ms.

As you may have guessed, you’ll need one thread playing
the ticks of your metronome (on Channel 10) while you
record any MidiMessages you receive (via your Receiver
implementation) on Channel 1. (Note that I am referring to
the channels/tracks from the musician’s perspective. The
channel references in the API are zero-based.) Listing 5
shows what your metronome thread might look like.

Playing the metronome is simple enough, but you need to
figure out a way to play it through just one time, then begin
recording MidiMessages as they arrive at your receiver (dis-
cussed later). How you do that will be left for you to decide.

Recording MIDI
How exactly do you record MidiMessages? There are basi-

cally two strategies: you can try to take note of what time each
message arrives, or you can use the included timestamp of
each message. In either strategy, your implementation of the
Receiver interface will create an ArrayList and add each
MidiMessage it receives to the ArrayList. Of course, you’ll
need to make sure you record only MidiMessages for the
duration immediately following the four-bar Metronome
count off until the user clicks stop.

Your first strategy might be to use System.currentTime-
Millis() to take note of the current system time (in ms) at
which each MidiMessage arrives. You’ll need to know this
when you play back these messages. The general idea is to
play back the messages using a thread, that’s sleeping
between messages, according to the relative time they origi-
nally arrived. In my experience, the system clock was not reli-
able enough to deliver rock-solid timings during playback.
You’ll know what I mean if you try this strategy when you lis-
ten to the playback of messages based on the system clock.

The other strategy is to use the embedded timestamp that
accompanies each MidiMessage. This timestamp is expressed
in microseconds based on the time you first opened the
MidiDevice. Unfortunately, by the time the four-bar
metronome count off ends, it’s difficult to say when the first
message should be played back. That is you can’t assume that
the first message that arrives should be played back at time
zero. Perhaps the musician’s first note is played halfway
through the first measure. Since the MidiDevice was opened
long before your metronome began playing, it’s difficult to
determine from the timestamp alone how much time your
playback thread should wait until it sends the very first mes-
sage. Of course, all messages after that are easy, since you can
just calculate the time to wait in between each message based
on the relative differences of the message’s timestamps.

The best solution I came up with was to just take note (by
way of System.currentTimeMillis()) of when recording actually
begins (that is, after the four-bar metronome count off), and
then take note of when the first MidiMessage arrives. Then,
during playback, the playback thread merely needs to wait the

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Take a tour of PerformaSure today:

http://java.quest.com/performasure/jdj

Diagnose and resolve performance issues
throughout your distributed J2EE system

' 2003 Quest Software, Inc. Quest and PerformaSure are trademarks or registered trademarks of Quest Software, Inc. Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

All other products are trademarks or registered trademarks of their respective companies.

PerformaSure™
Take advantage of Quest PerformaSure’s

exclusive Tag and Follow technology to diagnose

and resolve J2EE performance problems across an

entire multi-tier J2EE application.Tag and Follow traces

and reconstructs live end-user transactions across the JVMs,

web/application servers and databases of your distributed J2EE

system. Get to root cause with PerformaSure.

Get detailed diagnostics with rock-bottom overhead features:

• Ultra low-overhead production-grade agents

• Component-level instrumentation and detail dial

• Automatic sampling and filtering,and more

Part of the Quest Performance Management Suite for the J2EE Platform

46 November 2003 www.JavaDevelopersJournal.com

calculated delay time before playing back the first message.
Thereafter, it can simply use the relative differences between
the MidiMessage timestamps for all subsequent messages.

It may surprise you to learn that what you think of as a
chord (or several chords across multiple tracks) struck
simultaneously is actually played back one note at a time,
sent serially as a stream of MidiMessages, one at a time. You
have to remember that the playback loop playing back the
messages is so fast that the human ear will not be able to
discern the difference between the original “three notes
struck simultaneously” and “three notes played 1 ms apart.”

You should now be able able to record and play back a
single MIDI track at 120 bpm. If, when it plays back, it
sounds just like you played it, you’re halfway there. The next
step is to be able record additional MIDI tracks while playing
back previously recorded tracks.

Recording Multiple Tracks
You may have already begun to notice that, although you

are receiving and recording the MIDI messages, it’s hard to
control what sound/voice/patch the keyboard is playing.
This is why each of the 16 MIDI channels on the keyboard
can have a different patch associated with it. Most keyboards
allow you to change what MIDI channel they are transmit-
ting on. Whatever MIDI channel you have selected on the
keyboard should also change the patch selected as well.

The problem is that you don’t want to constantly have to
make sure your keyboard’s selected channel matches the
track you play to record in your sequencer. If they’re not in
sync, you’ll think you’re recording track/channel 2, but the
keyboard still has channel 1 selected. Although you may have
the “channel 2 ArrayList” full of the MidiMessages you
received, those messages have one of their bytes indicating
that they are channel 1 messages, and so playback of those
“channel 2 messages” results in playback on channel 1, play-
ing channel 1’s patch instead of channel 2.

The solution seems tricky and not very efficient, but it
seems to work just fine. The trick is to first turn off the key-
board’s “keyboard” from triggering sounds internally; it will
continue to transmit MIDI messages as usual:

ShortMessage msg = new ShortMessage();

msg.setMessage(

ShortMessage.CONTROL_CHANGE, 122, 0);

_receiver.send(msg, -1);

Next, “route” all incoming MIDI messages to the key-
board, playing them back on the track the user thinks he is
recording. For example, you may receive all your MIDI mes-
sages with the “channel 1 byte” set. If the user thinks she is
recording track 2, then for each MIDI message received, in
addition to recording it (by storing it in track 2’s message
ArrayList), change the “channel byte” to 2 and retransmit
them back to the keyboard (see Listing 6).

Playing Back Multiple Tracks
Assuming you have several different tracks of MIDI data

recorded, it’s time to play them back. Your first approach
might be to use a separate thread for each track (channel).
While this is an intuitive programming model, you’ll quickly
find that although each track (thread) plays back in perfect
time relative to itself, it’s difficult to keep it perfectly in sync
with the other tracks. If your tracks are short and you plan to
loop them, you could use thread synchronization to make
sure all tracks “sync up” with each other at the end of each
iteration. However, you will soon find your clean sequencer

code is getting cluttered up with complex thread synchro-
nization all over the place, and it becomes harder and harder
to manage and still achieve “rock solid” timing.

What I found to be easier to manage and virtually guaran-
teed to stay “in time” was to collect all MidiMessages, regard-
less of track (channel), put them into a single ArrayList, sort
them all based on their timestamp, and then play them all
back using a single playback thread.

Adding Digital Audio
By now you should have a good instrumental recorded

using multiple MIDI tracks, but you’ll add more interest to
your song by laying down a vocal track or two. Luckily, the
Java Sound API includes the javax.sound.sampled package
dedicated to recording and playing back digital audio.

Recording Audio
Ultimately, any recorded digital audio comes down to sam-

ples. A sample is a measurement at a point in time of what you
might picture as the audio “waveform.” The standard CD sam-
pling rate is to take 44,100 measurements, or samples, each
second. Each sample may be 8 bits, 16 bits, or more. There are
a variety of sample formats in use today, and the Java Sound
API supports about everything you’ll encounter. Some useful
constants for recording CD quality sound are:

AudioFormat.Encoding encoding =

AudioFormat.Encoding.PCM_SIGNED;

int rate = 44100;

int sampleSize = 16;

int channels = 1;

boolean bigEndian = true;

An AudioFormat object will be needed later:

AudioFormat format = new AudioFormat(

encoding, rate, sampleSize, channels,

(sampleSize / 8) * channels, rate,

bigEndian);

Before you can begin recording, however, you’ll need to
obtain a TargetDataLine. The Java Sound API models its sam-
pling API in terms of “lines.” A line may be a microphone
input, a previously recorded sample, the computer’s “line
out” or speaker, or any type of “input” or “output.” To facili-
tate the playback of multiple samples at the same time, the
interface Mixer is provided, which is itself a type of line.
Lines may have controls that parallel what you’d find in a real
mixer – gain, pan, volume, reverb, equalization, etc.

Like the MidiDevices returned from the MidiSystem, the
class AudioSystem serves as your gateway into finding out and
obtaining whatever Lines and Controls are installed and avail-
able to you. In general, the first step to recording an audio track
is to obtain a TargetDataLine suitable for recording audio in the
format requested, in this case an AudioFormat that is a single
16-bit channel recording 44,100 samples/second (see Listing 7).

As you may have suspected, you’ll need a separate thread
to capture the incoming sample data. Using the TargetData-
Line and OutputStream created previously, you’ll want to
create a loop that reads a chunk of bytes at a time from the
TargetDataLine, writing them out to the OutputStream until
there’s nothing left to read or until the user clicks stop (see
Listing 8).

At this point, your ByteArrayOutputStream contains a ton
of bytes. The average 3:30 minute song will require 9.3MB
worth of samples for just a single mono track! FileOutput-

J2
SE

H
O

M
E

J2
E

E
J2

M
E

48 November 2003 www.JavaDevelopersJournal.com

Stream might be a better choice if you’re going to be record-
ing lengthy samples and memory becomes scarce. Of course,
recording the sample is just half of the story. Now we have to
play it back.

Playing Back Audio
Playing back a previously recorded audio track is essen-

tially the reverse of recording it. That is, the sample’s bytes,
originally stored in an OutputStream, are written out to a
SourceDataLine one chunk at a time until there’s nothing left
or until the user clicks stop.

To read the bytes a chunk at a time, we’ll need an
InputStream. The Java Sound API provides the class
AudioInputStream that has several convenience methods for
working with samples. Again, we’ll need to refer to the same
AudioFormat that the sample was originally recorded in. In
our case, we’ll assume we’re dealing with a completely in-
memory sample, expressed as an array of bytes (see Listing 9).

Note that AudioInputStream’s mark method is used to
mark the beginning of the sample, while the reset method is
used to “rewind” the sample to the beginning.

As has been the case, we’ll need a separate thread to play
back the sample. We’ll use the AudioInputStream set up
above to read sample bytes from it, a chunk at a time, writing
them out to a SourceDataLine. Just as we obtained our
TargetDataLine from the AudioSystem, we’ll obtain a
SourceDataLine suitable for playing back a sample in our
AudioFormat through inquiry (see Listing 10).

Since we have a SourceDataLine that can handle our
AudioFormat, we can start a thread to write out the sample
bytes to it (see Listing 11).

Now that you have your audio track playing back – we’re
almost done!

Putting It All Together
At this point we have the main ingredients for a basic

multi-track MIDI sequencer that can also record and play
back audio. Although we can play back multiple tracks of
MIDI using just one thread, it’s much more difficult to play
back multiple samples with a single thread. For simplicity,
we’ll continue to use one thread for all MIDI data, but create
a different thread for each audio sample.

The basic trick for integrating MIDI and one or more
samples is to simply synchronize the start of the MIDI tracks
thread with the audio track thread(s) using normal thread
sychronization techniques.

Of course, real commercial MIDI/audio sequencers can
do much more than record and play back multiple tracks.
That’s just the beginning. After all, a real sequencer can:
• Play back what was recorded at one tempo at a different

tempo
• Import “instrument definitions” that specify the patch

names mapped to patch numbers
• Select each track’s “patch” by searching the available

patches by name
• Provide a mixer with volume and pan sliders for each track
• Record and play back volume changes from the mixer in

real time
• “Trigger” audio samples from the keyboard (a la a conven-

tional sampler)
• Quantize recorded MIDI data to the nearest 1/4 note,

1/8th note, 1/16th note, etc.

I’m out of space, so for now, I’ll have to leave that as an
exercise for you, the reader. In the meantime, enjoy your new
sequencer!

References
• Open source MIDI and audio projects: Audio Development

System: http://sourceforge.net/projects/adsystem
• jMusic: http://sourceforge.net/projects/jmusic
• Sound Grid: http://sourceforge.net/projects/soundgrid

API References
• Java Sound Programmer Guide:

http://java.sun.com/j2se/1.4.1/docs/guide/sound/pro
grammer_guide/contents.html

• Java Sound Demo: http://java.sun.com/products/java-
media/sound/samples/JavaSoundDemo/

MIDI Specification
• Official MIDI Specification: www.midi.org
• Online MIDI Specification (unofficial):

www.borg.com/~jglatt/tech/midispec.htm

Miscellaneous
• Bug ID 4773012: RFE: Implement a new stand-alone

sequencer: http://developer.java.sun.com/developer/
bugParade/bugs/4773012.html

• Bug ID 4783745: Sequencer cannot access external MIDI
devices: http://developer.java.sun.com/developer/
bugParade/bugs/4783745.html

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Listing 1: Displaying the MIDI devices available

1MidiDevice.Info[] info =
2 MidiSystem.getMidiDeviceInfo();
3
4 for (int i=0; i < info.length; i++) {
5 log(i + ") " + info[i]);
6 log("Name: " + info[i].getName());
7 log("Description: " +
8 info[i].getDescription());
9
10 MidiDevice device =
11 MidiSystem.getMidiDevice(info[i]);
12 log("Device: " + device);
13}

Listing 2: Sending “middle C note on” and “note off”

1// For each MidiDevice, open it up,
2// obtain it’s receiver, and try it out
3MidiDevice dev = getDevice();
4dev.open(); //(at program start)
5Receiver receiver = dev.getReciever();
6
7// Send middle C (60) "note on"
8// at maximum velocity (127)
9ShortMessage msg1 = new ShortMessage();
10msg1.setMessage(ShortMessage.NOTE_ON,
11 60, 127);
12receiver.send(msg1, -1);
13
14// Wait a second
15Thread.sleep(1000);
16
17// Send middle C "note off"
18ShortMessage msg2 = new ShortMessage();
19msg2.setMessage(ShortMessage.NOTE_OFF,
20 60, 0);
21receiver.send(msg2, -1);
22
23// Close the device (at program exit)
24dev.close();

Listing 3: Minimal Receiver implementation

1public class MyReceiver extends Object
2 implements Receiver {
3 public void send(MidiMessage msg,
4 long time) {
5 log(“Received message “ + msg);
6 }
7
8 public void close() {
9 log(“Closing”);
10 }
11}

Mike Gorman is a
senior software

architect for J.D.
Edwards, a

PeopleSoft company,
concentrating on

J2EE distributed
transaction systems.

Mike has been cod-
ing in Java since

1997. In his spare
time, Mike plays

with MIDI, Swing,
Web services, and

JDO.

mike_gorman@jded-
wards.com

Listing 4: Listen to each device’s transmitter

1// Listen for MIDI messages originating
2// from each MidiDevice
3MidiDevice device = getDevice();
4device.open(); // (at program start)
5
6// Hook up a receiver to the transmitter
7device.getTransmitter().setReceiver(
8 new MyReceiver());
9
10// Wait long enough to play a few notes
11// on the keyboard
12Thread.sleep(30000);
13
14// Close the device (at program exit)
15device.close();

Listing 5: Sample metronome

1public class Metronome extends Object
2 implements Runnable {
3 private Receiver _receiver;
4 private ShortMessage _accentOn;
5 private ShortMessage _accentOff;
6 private ShortMessage _nonAccentOn;
7 private ShortMessage _nonAccentOff;
8 private boolean _stopped = true;
9
10 public Metronome(MidiDevice rcvDev) {
11 super();
12 _receiver = rcvDev.getReceiver();
13 _accentOn = createNoteOnMsg(42,127);
14 _accentOff = createNoteOffMsg(42);
15 _nonAccentOn = createNoteOnMsg(42,90);
16 _nonAccentOff = createNoteOffMsg(42);
17 }
18
19 private ShortMessage createNoteOnMsg(
20 int note, int velocity) {
21 ShortMessage msg = new ShortMessage();
22 msg.setMessage(ShortMessage.NOTE_ON,
23 note, velocity);
24 return msg;
25 }
26
27 private ShortMessage createNoteOffMsg(
28 int note) {
29 ShortMessage msg = new ShortMessage();
30 msg.setMessage(ShortMessage.NOTE_OFF,
31 note, 0);
32 return msg;
33 }
34
35 public void startMetronome() {
36 _stopped = false;
37 new Thread(this).start();
38 }
39
40 public void stopMetronome() {
41 _stopped = true;
42 }
43
44 public void run() {
45 long startTime =
46 System.currentTimeMillis();
47 try {
48 while (_stopped == false) {
49 _receiver.send(_accentOn, -1);
50
51 Thread.sleep(100);
52 _receiver.send(_accentOff, -1);
53 Thread.sleep(
54 getTimeTillNextBeat(startTime));
55 for (int i=0; i < 3; i++) {
56 _receiver.send(_nonAccentOn,
57 -1);
58 Thread.sleep(100);
59 _receiver.send(_nonAccentOff,
60 -1);
61 Thread.sleep(getTimeTillNextBeat(
62 startTime));
63 }
64 }
65 } catch (InterruptedException e) {
66 e.printStackTrace();
67 _stopped = true;
68 }
69 }
70
71 // assumes 120 bpm (or 500ms per beat)
72 private static long getTimeTillNextBeat(
73 long startTime) {
74 long position =
75 System.currentTimeMillis() –
76 startTime;
77 long timeRemaining = position % 500;
78 return timeRemaining;
79 }
80}

Listing 6: Rebroadcasting incoming MIDI messages on the desired MIDI channel

1public void send(MidiMessage msg,
2 long time) {
3 try {
4 if (msg instanceof ShortMessage) {
5 // Play back the incoming msg on
6 // the desired channel
7 ShortMessage incomingMsg =
8 (ShortMessage) msg;
9 ShortMessage playbackMsg =
10 new ShortMessage();
11
12 // Change the incoming message
13 playbackMsg.setMessage(
14 incomingMsg.getCommand(),
15 _playbackChannel,
16 incomingMsg.getData1(),
17 incomingMsg.getData2());
18 _receiver.send(playbackMsg, -1);
19
20 // If the sequencer is currently
21 // recording, hold on to each msg
22 if (_recordEvents) {
23 // Take note of when the first
24 // msg arrives so we’ll know
25 // when to start playback later
26 if (_firstMessageArrivedAt == 0) {
27 _firstMessageArrivedAt =
28 System.currentTimeMillis();
29 }
30 _recordedEvents.addElement(
31 new MyEvent(playbackMsg, time));
32 }
33 }
34 } catch (InvalidMidiDataException e) {
35 e.printStackTrace();
36 }
37}

Listing 7: Preparing to record audio

1DataLine.Info info = new DataLine.Info(
2 TargetDataLine.class, getAudioFormat());
3
4if (AudioSystem.isLineSupported(info) ==
5 false) {
6 log("Line matching " + info +
7 " not supported.");
8 return;
9}
10
11TargetDataLine targetLine =
12 (TargetDataLine) AudioSystem.getLine(
13 info);
14targetLine.open(getAudioFormat(),
15 targetLine.getBufferSize());
16
17// Create an in-memory output stream and
18// initial buffer to hold our samples
19ByteArrayOutputStream baos =
20 new ByteArrayOutputStream();
21int frameSizeInBytes =
22 getAudioFormat().getFrameSize();
23int bufferLengthInFrames =
24 targetLine.getBufferSize() / 8;
25int bufferLengthInBytes =
26 bufferLengthInFrames * frameSizeInBytes;
27byte[] data = new byte[bufferLengthInBytes];

Listing 8: Recording audio

1public void run() {
2 getTargetLine().start();
3
4 while (isRecording()) {
5 int numBytesRead =
6 getTargetLine().read(getData(), 0,
7 getBufferLengthInBytes());
8 if (numBytesRead == -1) {
9 break;
10 }
11 getOutputStream().write(getData(), 0,
12 numBytesRead);
13 }
14 getTargetLine().stop();
15
16 // flush and close the output stream
17 try {
18 getOutputStream().flush();
19 getOutputStream().close();
20 } catch (IOException e) {
21 e.printStackTrace();
22 }
23}

Listing 9: Preparing for audio playback

1byte[] data = getSampleBytes();
2
3int frameSizeInBytes =
4 getAudioFormat().getFrameSize();
5AudioInputStream audioInputStream =

50 November 2003 www.JavaDevelopersJournal.com

J2
SE

H
O

M
E

J2
E

E
J2

M
E

51November 2003www.JavaDevelopersJournal.com

6 new AudioInputStream(
7new ByteArrayInputStream(data),
8 getAudioFormat(), data.length /
9 frameSizeInBytes);
10
11try {
12 audioInputStream.mark(2000000000);
13 audioInputStream.reset();
14} catch (IOException e) {
15 e.printStackTrace();
16 return;
17}
18
19long duration = (long)
20 ((audioInputStream.getFrameLength() *
21 1000) / getAudioFormat().getFrameRate());

Listing 10: Initializing a SourceDataLine

1// Define the required attributes for
2// our line, and make sure a compatible
3// line is supported.
4DataLine.Info dlInfo = new DataLine.Info(
5 SourceDataLine.class, getAudioFormat());
6if (AudioSystem.isLineSupported(dlInfo)
7 == false) {
8 throw new Exception("Line matching " +
9 dlInfo + " not supported.");
10}
11
12getAudioInputStream().reset();
13
14// Get and open the source data line for
15// playback.
16SourceDataLine sourceLine =
17 (SourceDataLine) AudioSystem.getLine(
18 dlInfo);
19int bufSize = 16384;
20sourceLine.open(getAudioFormat(),
21 bufSize);

Listing 11: Playing back audio

1public synchronized void run() {
2 try {
3 // play back the captured audio data
4 int frameSizeInBytes =
5 getAudioFormat().getFrameSize();
6 int bufferLengthInFrames =
7 getSourceLine().getBufferSize() / 8

8 int bufferLengthInBytes =
9 bufferLengthInFrames *
10 frameSizeInBytes;
11 byte[] data = new byte[
12 bufferLengthInBytes];
13
14 // start the source data line
15 sourceLine.start();
16
17 // main playback loop
18 while (isPlaying()) {
19 // rewind at start of each loop
20 getAudioInputStream().reset();
21 while (true) {
22 int numBytesRead =
23 getAudioInputStream().read(
24 data);
25
26 if (numBytesRead == -1 ||
27 isPlaying() == false) {
28 break;
29 }
30
31 int numBytesRemaining =
32 numBytesRead;
33
34 while (numBytesRemaining > 0) {
35 numBytesRemaining -=
36 sourceLine.write(data, 0,
37 numBytesRemaining);
38 }
39 }
40
41 // We’ve reached the end of the
42 // stream. Let the data play out,
43 // then stop and close the line.
44 sourceLine.drain();
45 }
46 sourceLine.stop();
47 sourceLine.close();
48 } catch (LineUnavailableException e) {
49 e.printStackTrace();
50 } catch (IOException e) {
51 e.printStackTrace();
52 } catch (InterruptedException e) {
53 e.printStackTrace();
54 } catch (JStudioException e) {
55 e.printStackTrace();
56 }
57}

52 November 2003 www.JavaDevelopersJournal.com

amuel Johnson said, “When a man knows
he is to be hanged in a fortnight, it con-
centrates his mind wonderfully.” While
Sun’s current situation may not be dire
enough to be considered analogous to
facing the hangman’s rope, it is clear that
economic distress is forcing Sun to change
its mindset. Whether that change is a con-
centrating focus or a casting about for a
lifeline is subject to debate.

Now I won’t speculate about the like-
lihood of Sun being acquired by IBM,
HP, Dell, or anyone else, other than to
say that Scott McNealy’s egotism plus
Sun’s $5.7 billion cash reserve would
certainly make such a takeover attempt
entertaining. Taking away a favorite toy
from a petulant child can be difficult
enough, but if that child can afford a
phalanx of lawyers and other corporate
hatchet men, the attempt can rival the
best overblown soap opera on TV.

I will, however, remark upon recent
events.

The telecommunications industry was
hit particularly hard by the bursting (aka
the dot bomb) of the tech bubble, and the
telecom industry was an important buyer
of Sun’s servers. Sun’s revenue stream from
hardware also continues to shrink as a
result of a corporate shift to cheaper Intel
boxes and Linux, so Sun is placing greater
marketing emphasis on software.

At this year’s JavaOne, Sun launched a
campaign to increase public recognition of
the Java brand name. “Java Powered” is to
become the catchphrase for this cam-
paign, which includes a redesigned Java
cup (with bolder strokes) and redesigned
Web sites (java.net for developers,
java.com for the public). Sun and its Java
partners have unleashed a $500 million
advertising onslaught to promote “Java
Powered” with Christina Aguilera as its eye
candy. All well and good since, as I wrote in
a previous editorial, I felt that Sun was rely-
ing too heavily on its technology laurels
and not being effective in marketing to the
general public (I used the success of the
WiFi branding as an example of the desired
goal). Although I do think this Christina
business may have gone too far with the
“Christina Everywhere” J2ME application
touted on Sun’s page (www.java.com/en/
explore/ mobile/christina.jsp) and avail-
able from Nextel. Not exactly what I had in

mind when writing MIDlets for Nextel, but
then maybe that explains why I haven’t
retired on my MIDlet licensing fees.

Now comes the Java Enterprise System
(née Project Orion) and the Java Desktop
System, and I’m perplexed. First realize
that neither one is just Java; rather, multi-
ple technologies are bundled under the
Java moniker, presumably because Java
has the widest public recognition. Of
course, this may only matter to us techies
because we know what Java really is, but I
can’t help but wonder whether impreci-
sion here reflects a lack of cohesion in the
overall effort.

One rationale for Orion, as stated at
www.sun.com/2003-0930/feature/, is that
“customers are tired of…acquiring enter-
prise infrastructure software from multi-
ple vendors.” Am I the only one who sees
some irony in this statement from a com-
pany whose “write once, run anywhere”
and “the network is the computer”
philosophies embrace heterogeneous
systems? Isn’t the hegemony of a single-
source solution what we’re trying to avoid
vis-à-vis Microsoft?

The Java Desktop System is a pseudo-
MS Windows and Office without the MS.
While I admire Sun’s dogged attempt to
provide an alternative to MS, what does
it have to do with Java? Is there a realistic
chance of wresting the desktop from
Microsoft, or is this largely fueled by
McNealy’s antagonism toward all things
Bill?

Now I’m not expecting Sun to be
eclipsed – they still have superior technol-
ogy, and they’re pointed in the right direc-
tion (in my humble opinion) in branding
and promoting Java technology. In the
J2ME arena, in particular, they have an
especially strong position, as evidenced by
the continued increase in the number of
hardware platforms and network
providers supporting J2ME. A revival of
the tech economy and, in particular, the
telecommunications industry, could make
all other factors largely irrelevant by
increasing the demand for both network
servers and enterprise (J2EE) and mobile
(J2ME) software. I just wish Sun’s market-
ing strategy seemed more coherent to me.
But then I’m an engineer, and I’ve learned
that marketing employs a different logic
than the logic I understand.

Hanged in a
Fortnight?

S

J2ME INSIGHT

Hanged in a Fortnight?

Samuel Johnson said, “When a

man knows he is to be hanged in

a fortnight, it concentrates his

mind wonderfully.” While Sun’s

current situation may not be dire

enough to be considered analo-

gous to facing the hangman’s

rope, it is clear that economic

distress is forcing Sun to change

its mindset.

Glen Cordrey is a software
architect working in the

Washington, DC, area. He’s been
using Java for five years,

developing both J2EE and J2ME
applications for

commercial customers.

glencordrey@sys-con.com

52

Glen Cordrey
J2ME Editor

H
O

M
E

J2
E

E
J2

SE
J2

M
E

54Life Outside
the Sphere

Application Integration
Desktop Java
Mobility
ASP.NET
VS.NET
JavaServer Faces
SOA
Interoperability
Java Gaming

Application Integration
Desktop Java
Mobility
ASP.NET
VS.NET
JavaServer Faces
SOA
Interoperability
Java Gaming

Addressing:Addressing:

Hynes Convention Center
Boston, MA

Edge2004Edge2004

Contact information: 2 0 1 8 02-3 0 6 9 • events@sys-con.com

Over 200 participating companies will display and demonstrate over 500
developer products and solutions.

Over 3,000 Systems Integrators, System Architects, Developers, and Project
Managers will attend the conference expo.

Over 100 of the latest sessions on training, certifications, seminars, case-studies,
and panel discussions promise to deliver real world benefits, the industry pulse
and proven strategies.

For more information visit
www.sys-con.com

or call
201 802-3069

OWNED BY

PRODUCED BY

ea ndustry
CONSORTIUM

EAST

ARCHITECTING JAVA, .NET, WEB SERVICES,
OPEN SOURCE, AND XML

ARCHITECTING JAVA, .NET, WEB SERVICES,
OPEN SOURCE, AND XML

International Conference & Expo

Development Technologies Exchange
EAST

November 21, 2003
Register By

$400SAVE
Up

To

Full Day Tutorials Targeting
• Java • .NET • XML
• Web Services • Open Source

Conference program available online!
www.sys-con.com/edgeeast2004

Development Technologies Exchange
February 24-26, 2004

Hynes Convention Center, Boston, MA

54 November 2003 www.JavaDevelopersJournal.com

ebugging, pro-
filing, packaging –
whatever you want, WSDD can
do it all. IBM’s WebSphere Device
Developer (WSDD) is a sophisticated
development platform for IBM’s WebSphere
Micro Environment (WME, also known as J9).
Based on Eclipse, it’s just right for those who like to work
with Eclipse. The problems start if you prefer to use some other
IDE or you believe in automated, continuous integration. This
article will show you how to master using WME without WSDD.

WSDD uses Ant build scripts, but effectively hides the
implementation of its special tasks for the SmartLinker
jxelink and other tools. If you want to build a WSDD project
outside of WSDD, you can’t rely on automatically generated
Ant build files. This makes it hard to build a project from the
command line and therefore rules out automatic builds. The
necessary tasks are simply not accessible. On top of projects
not being exportable, it’s fairly difficult for inexperienced
users to import an existing project into WSDD.

With this said, why would you use WSDD if it locks you
in? Well, as mentioned before, it has a couple of nice features
and – this is probably the main reason – if you want to use
WME you have to install WSDD. IBM unfortunately does not
offer WME without WSDD. Also since Big Blue seems to con-
centrate its documentation efforts on the IDE rather than the
VM, it’s only natural to use the IDE for convenience.

Luckily all the WSDD’s custom Ant tasks are included as
command-line tools in the WME. This allows us to call them
using the <exec> task. Admittedly, there is a bit of irony here,
because some of these tools were originally written in Java.

Palm as an Example
Let’s look at an example that shows how to build a deployable

application for J9 on Palm using Ant. To reference the base of the
J9 installation, it makes sense to define a corresponding proper-
ty. The J9 folder is usually installed in a subfolder of IBM/Device
Developer/wsddx.y called ive, therefore we name the property
ive. For the etymologists among you: ive is short for “IBM
VisualAge Embedded,” short for “IBM VisualAge Embedded
Systems, Java Edition,” which is the original name for VAME or
“VisualAge Micro Edition,” WSDD’s successful predecessor (win-
ner of the 2002 JDJ Reader’s Choice Award for Best J2ME IDE).

The first step in producing our application is to compile
the Java classes. IBM recommends using the J9 compiler j9c.
Like all other J9 tools, j9c can be found in the folder
${ive}/bin. Experience shows that you’re probably equally
well off with a Sun compiler. To compile for a specific profile
you have to include its classes in the bootclasspath. Typically
you’ll find the appropriate classes in ${ive} /lib/jcl<your-
Profile>/classes.zip. Don’t ask me why IBM doesn’t stick to

the convention of using JARs instead of zips. However,
equipped like this, compiling should be a piece of cake.

<javac

srcdir="src"

destdir="classes"

bootclasspath=

"${ive}/lib/jclCldc/classes.zip"

/>

Once you have compiled all the sources, package them
into the J9 archive format JXE (Java eXEcutable). This is done
with the jxelink SmartLinker – a tool that not only packages,
but also completely rearranges the bytecode. For platforms
other than Palm and QNX it can even compile bytecode into
native code (ahead-of-time compilation, AOT). Because of
space constraints I won’t delve into the many options of this
tool; I’ll only describe how to call it from Ant. Also, because
there are so many options, it makes sense to use an extra file
for them, just like WSDD does. The location of this file can be
passed as an argument to the jxelink executable with a pre-
fixed @. To access properties defined in the Ant file, you can
declare macros for the link option file, for example:

<exec

executable="${ive}/bin/jxelink.exe">

<arg value="-macro"/>

<arg value="BASEDIR=${basedir}"/>

<arg value="-o"/>

<arg file="jxe/MyApp"/>

<arg value="@${basedir}/palm.link"/>

</exec>

This code sets the macro BASEDIR to the same value as the
property ${basedir} so that we can pass it into the options file
${basedir}/palm.link, then we can reference it with double curly
parentheses like this {{BASEDIR}}. For example, if you put the line
“-cp "{{BASEDIR}}/SomeLib.jar"” into the link options file, ${base
dir}/SomeLib.jar will be added to the SmartLinker’s classpath.

As the maximum segment size for the Palm is 64KB, jxelink
has to be configured to produce multiple JXE files for applica-

D

H
O

M
E

J2
E

E
J2

SE
J2

M
E

Contact | Carmen Gonzalez: carmen@sys-con.com or 201 802.3021

Carmen Goon

Senior VP Marrk

#1 Circulation in the World!
JDJ is the highest circulation

i-Technology magazine in the world!

*JUNE 2003 BPA AUDIT STATEMENTS *All circulation numbers are publishers’ most current own data, six-month average circulation through June 2003.

Java
Developer,s

Journal

 162,019**

Dr. Dobb,s

120,031120,031**

MSDN

75,56175,561**

56 November 2003 www.JavaDevelopersJournal.com

tions exceeding this limit. Therefore it usually makes sense to
specify a separate output directory. In the previous code snip-
pet we achieve this with the –o option. As a side note, this also
means that each of your compiled classes must not be larger
than 64KB, which can be tricky when you’re using large arrays.

Once you have produced the necessary JXE files, you can
proceed to build Palm resource files. If you are familiar with
Palm development, you’ve probably already used the Palm
resource compiler PilRC. This free tool compiles GUI defini-
tions into binary resources, which you can use from your
code. This makes sense, particularly when you’re using the
nongraphical CLDC (Connected Limited Device Configur-
ation) because you want to reduce the footprint or escape the
MIDP sandbox, but still need to use a GUI.

Like other VMs, J9 comes with wrapper classes for PalmOS
(located in ${ive}/ runtimes/ palmos/68k/ ive/lib/ palmos.zip)
that let you call the needed OS functions for presenting a GUI
defined with PilRC. As the wrapper is fairly thin, this unfortu-
nately means that you have to manually allocate and free
memory. To those of us who got to appreciate garbage collec-
tion, this is really nasty…. However, to compile our GUI
resources we simply invoke PilRC with the <exec> task.

<exec executable="pilrc.exe">

<arg file="MyApp.rcp"/>

<arg path="bin"/>

</exec>

The first argument is the filename of the resource descrip-
tion file and the second is the output directory for the com-
piled results. Again, for brevity, I will not explain the PilRC file
format as the compiler comes with a comprehensive and

easy-to-understand manual.
Now we are getting to the final step: building

the PRC (PalmOS Resource Collection) file. For
this purpose we use J9’s jxe2prc command-line
tool. It takes all your compiled code and packages
it into an executable PRC file. As we have to pass
all the binary resource files on the command line,
we need to build a corresponding property that
contains all the filenames. We’ll build this proper-
ty by creating a <fileset> that contains all the
binary files and then convert this file collection
into a single property using the <pathconvert>
task. Note that in order to avoid problems with
spaces in the base directory, we substitute the
base directory ${basedir} with a dot “.” using
<map>.

<fileset dir="bin" id="bin.files.id">

<include name="*.bin"/>

</fileset>

<pathconvert pathsep=" "

property="bin.files"

refid="bin.files.id">

<map from="${basedir}" to="."/>

</pathconvert>

Now that we can reference the files generated
by PilRC, we call jxe2prc with the appropriate
arguments. These are (in this order):
• The four character Palm creator ID
• Your application name
• The main JXE file and all bin files we just gener-

ated
• Name of the output file

<exec

executable="${ive}/bin/jxe2prc.exe">

<arg value="myid"/>

<arg value="MyApp"/>

<arg file="jxe/MyApp.jxe"/>

<arg line="${bin.files}"/>

<arg file="MyApp.prc"/>

</exec>

Done. With the help of the Palm install tool you can now
synchronize the freshly built PRC file to your Palm and take
your application for a spin – provided that you’ve already
installed J9. This is done by synchronizing the PRC files found
in ${ive}/runtimes/ palmos/68k/ive/ bin to your Palm. You’ll
need only one of the files, either midp20.prc or cldc20.prc,
depending on which of the two you want to use.

Chances are you’ll want to try your application out in the
emulator before you actually test it on a real device. To conve-
niently start your application with Ant, first create a Palm emu-
lator session file (psf) with J9 already installed. To create this
session, just install the PRC files from ${ive}/runtimes/palmos/
68k/ive/bin in a session with a clean Palm ROM and save the
session – e.g., under j9cldc_run.psf (see sidebar on how to
obtain a ROM file). Then start the emulator like this:

<exec executable="emulator.exe">

<arg value="-psf"/>

<arg file="j9cldc_run.psf"/>

<arg value="-load_apps"/>

<arg file="MyApp.prc"/>

<arg value="-run_app"/>

<arg value="MyApp"/>

<arg value="-quit_on_exit"/>

</exec>

This task will automatically install and start your applica-
tion. The -quit_on_exit option causes the emulator to auto-
matically shut down once you exit your application. If you
don’t specify the -quit_on_exit option, it’s crucial that you don’t
save your emulator session. Otherwise you won’t have a clean
environment the next time you start your application this way.

If you’re like every other developer, something is probably
buggy in your application. The emulator lets you write to
STDERR and STDOUT, but System.err.println-debugging is a
little backward and certainly a time-consuming matter. What
you really need is a debugger. As WME supports the Java
Debug Wire Protocol (JDWP), you can attach the debugger of
your choice to J9. Just take a short detour.

H
O

M
E

J2
E

E
J2

SE
J2

M
E

Figure 1 Accessing the J9

preferences dialog

Figure 2 Checking the

“enable debug”

Figure 3 Remote debugging configuration for IntelliJ IDEA 3.0

57November 2003www.JavaDevelopersJournal.com

First you need to tell J9 that it should start in debugging
mode. For this purpose, load the j9cldc_run.psf profile you
created earlier, open the “Prefs” application, and select “J9
Java VM” (see Figure 1). Then check the “Enable Debug”
checkbox (see Figure 2) and save the profile under the name
j9cldc_debug.psf. This is now your debug base session.

J9 does not support JDWP directly. When linking with jxelink,
all the debug symbols are stripped out of the JXE and put into a
symbol file to minimize the JXE’s size. Therefore your debugger
needs to communicate with J9 through a tool called j9proxy. It
takes the debuggee’s and the debugger’s addresses and the sym-
bol file as arguments. The symbol file is located in the same

directory as our JXE file and has the file extension sym.
All we have to do now is start the j9proxy, our application,

and the debugger. We can easily start the proxy and the appli-
cation in an Ant target.

<parallel>

<exec executable="emulator.exe">

<arg value="-psf"/>

<arg file="j9cldc_debug.psf"/>

<arg value="-load_apps"/>

<arg file="MyApp.prc"/>

<arg value="-run_app"/>

<arg value="MyApp"/>

<arg value="-quit_on_exit"/>

</exec>

<exec

executable="${ive}/bin/j9proxy.exe">

<arg value="localhost:8096"/>

<arg value="localhost:8097"/>

<arg file="jxe/MyApp.sym"/>

</exec>

</parallel>

Note that we put the two <exec> tasks inside a <parallel>
container task in order to start both the application and the
proxy at the same time. With this setup we expect the Palm
application to fulfill the JDWP server role, listening with a sock-
et on port 8096. Our debugger needs to be configured to use a
socket as a transport layer to attach to the proxy, which is lis-
tening on port 8097 for the debugger’s connection. The proxy in
turn connects to the application on the Palm (see Figure 3).

Once we’ve started the Ant target we just need to start our
debugger and we’re ready to roll. While debugging, resist
using the many optimization options jxelink has to offer.
Neither obfuscation nor inlining is very conducive to debug-
ging – you may end up waiting for a long time before the
application hits any breakpoints, simply because the line of
code your breakpoint is referencing may not exist anymore.

There’s no support for profiling J9 for Palm applications, so
System.err-timestamps are your best bet. As the time inside the
emulator is not the real time and usually goes by faster than on
your PC, these timestamps are also a useful reality check about
how slow your application would be on a real device.

Conclusion
All in all IBM delivered a successful J2ME implementation,

which can be integrated in a continuous integration software
development process – thanks to the included command-line
tools. Whether you like WSDD or not is a matter of taste.
Anyhow, you can get around it. And if you run into problems on
the way, just drop a line to the support newsgroup. Usually the
folks from IBM/OTI answer quickly and with great expertise.

Resources
• WME: www.ibm.com/software/wireless/wme/
• WSDD: www.ibm.com/software/wireless/ wsdd/
• WSDD newsgroup: news://news.software.ibm.com/

ibm.software.websphere.studio.device-developer
• PilRC : www.ardiri.com/index.php? redir=palm& cat=pilrc
• POSE : www.palmos.com/dev/tech/tools/emulator/
• Palm Simulator : www.palmos.com/dev/tools/

simulator/
• JPDA/JDWP: http://java.sun.com/products/jpda
• MIDP WME Toolkit for PalmOS: http://pluggedin.

palm.com/regac/pluggedin/Toolkit
• Project skeleton: www.sys-con.com/java/sourcec. cfm

Hendrik Schreiber
develops data synchro-
nization solutions uti-
lizing SyncML and
J2ME/J2EE for
Nexthaus in Raleigh,
North Carolina. He is
also co-author and
author of two German
Java-related books,
published by Addison-
Wesley.

hs@tagtraum.com

There are two ways to obtain a Palm ROM file:
1. Become a member of the PalmSource (the software side of Palm) devel-

oper program and download ROMs from the program’s Web site.
2. Transfer the ROM from a Palm device to your desktop machine using the

ROM Transfer.prc file that comes with the Palm emulator. Directions are
included in the emulator’s manual.

Either way works equally well. However, to deliver your application to a
wide audience with many different Palm devices, join the Palm developer
program and test your application with as many different ROMs as possible.

The WME release included in WSDD 5.5 officially does not support Palm
Tungstens. If you’re just interested in deploying MIDP 1.0 applications on the
Palm, look at the WME Toolkit for PalmOS developers, which supports Tungstens
and is freely available from Palm. The toolkit lets you convert MIDP applications
into PRC files for J9. Palm and IBM announced that future Tungsten devices will
come with J9 preinstalled. Owners of Tungstens W, T2, and C who bought after
October 1, automatically received a WME license bundled with their device.

At the time of writing IBM had only published a Technical Preview for their
upcoming WSDD 5.6 release, which will also support Palm Tungsten devices.

Confused by all the acronyms? You’re not alone. Let’s try to get it all
straightened out.
• Java Micro Edition (J2ME): Basically Java for small devices.
• Connected Limited Device Configuration (CLDC): J2ME configuration for

small devices.
• Mobile Information Device Profile (MIDP): A profile based on CLDC, designed

to extend and enhance the J2ME Connected Limited Device Configuration.
• WebSphere Studio Device Developer (WSDD): An integrated development

environment (IDE) for J2ME. Not to be confused with the Web site called
WebSphere Developer Domain (WSDD).

• WebSphere Micro Edition (WME): IBM’s implementation of J2ME.
This includes the JVM J9, originally written by the IBM subsidiary OTI.

• Palm Resource Compiler (PilRC): A little freeware tool that compiles tex-
tual GUI definitions into binary resources.

• Java Debug Wire Protocol (JDWP): An element of the Java Platform
Debugger Architecture (JPDA) that defines how debugger and debuggee
communicate with each other.

• Palm OS Emulator (POSE): Free hardware emulator for Palm OS, pub-
lished under GPL. Can only be used for Palm devices with Palm OS ver-
sions 5.0. The emulator mentioned in the article always refers to POSE,
not the newer Palm OS Simulator.

• Palm OS Simulator: Palm OS 5.x recompiled for a desktop machine.
• IBM VisualAge Embedded (IVE): Short for “IBM VisualAge Embedded

Systems, Java Edition”, which is the original name for “VisualAge Micro
Edition” (VAME), WSDD’s predecessor.

How to Obtain a Palm ROM File

MIDP on Tungstens

What’s in an Acronym?

58 November 2003 www.JavaDevelopersJournal.com

hat do you get if you cross an early 21st-
century visionary CTO with a late 19th-
century employee of the Edison Electric
Light Company? Answer: a fantastic
keynote address at Web Services Edge
2003 West, held in Santa Clara last month.

The visionary in question was Allan
Vermeulen, coauthor of the codehead’s
classic The Elements of Java Style, and
now CTO of the world’s largest online
retailer, Amazon.com. The Edison
employee was Sam Unsell, whose con-
tribution to the development of tech-
nology – Vermeulen explained – was to
develop an economic model for elec-
tricity use in Chicago.

As with electricity then, so with Web
services now. This, in Vermeulen’s view,
is the next shoe that needs to drop.

“Somebody has to be the Sam
Unsell of Web services,” he proclaimed,
meaning that someone in the Web ser-
vices space has to come up with a good
idea for what kind of economic model
is best suited to underpinning the tech-
nology.

Commercially available electricity,
he explained, was only able to catch on
and become pervasive because, with
Unsell’s help, the Edison Electric Light
Company invented not just the first
commercially practical incandescent
lamp but a complete electrical distribu-
tion system for light and power –
including generators, motors, light
sockets with the Edison base, junction
boxes, safety fuses, underground con-
ductors, and other devices.

The comparison held the packed
audience at the Santa Clara Convention
Center, quite literally, spellbound. It
was deemed by all who attended to be
one of the most memorable and – pun
intended – illuminating keynotes in the
history of the Web Services Edge series
of Conferences and Expos, which is
saying something since in previous
years keynotes have been given by folks
like the “Father of Java,” Sun’s James
Gosling; and the “Father of Markup,”
Charles F. Goldfarb.

Vermeulen’s ebullient opening
keynote characterized well a confer-

ence that for three days brimmed with
good content and animated
discussions.

The Complexity Crisis
Keynote discussion panels featured

the likes of John Schmidt, CTO of the
No. 1 specialty retailer in the U.S., Best
Buy, who brought to bear his enormous
real-world experience of Web services:
Best Buy moves about 100 gigabytes of
data a day – inventory data, foundation
data (pricing, etc.) – and top manage-
ment throughout industry, Schmidt
reported, is starting to recognize the
issues of complexity in IT.

“We need,” he observed, “to help
take layers of complexity out of our IT
environment.” Whereas Web services,
in Schmidt’s view, may take us in the
opposite direction.

Coming from a seasoned expert like
Schmidt, who also chairs the
Methodology Committee of the EAI
Consortium, this was a compelling
message – especially once he had set
the stage with a reference to what he
called “the dark side of systems integra-
tion – the complexity crisis.”

Best Buy alone has over 600 tech-
nologies to support 165 technology
capabilities, Schmidt reported. “A cou-
ple of years ago it took about 20–30
days to build a complete interface,” he
said. “Nowadays it takes about 4–5
days. Best Buy now adds over 550 inter-
faces every month (over the past 3
months).”

In other words, and this was
Schmidt’s point, “As complex as our
environment is at the moment, Web
services is going to make it even more
complicated.”

A Web service can be built almost at
the push of a button, Schmidt conclud-
ed. “Accordingly, they will proliferate on
a massive scale.”

Keynote Panel: Web Services
Paradigm Has Evolved

At another keynote discussion panel
the question was “Interoperability: Is
Web Services Delivering?”

The State of Web Services,
2003 A.D.
They’re ‘a tool for the times,’ say the experts by Jeremy Geelan

W

SHOW REVIEW

J2
SE

H
O

M
E

J2
E

E
J2

M
E

59November 2003www.JavaDevelopersJournal.com

When panel moderator Derek
Ferguson, editor-in-chief of .NET
Developer’s Journal, asked the panel
members to set the parameters of the
discussion by first defining Web servic-
es, it became clear that the invited
experts on the keynote stage agreed
that, while defined by the interop pro-
tocol known as SOAP 1.1, no longer do
Web services necessarily have to be
XML, or even over HTTP. The paradigm
has evolved.

David Chappell, VP and chief tech-
nology evangelist, Sonic Software,
stressed that in his view, while Web
services interactions do not have to be
across HTTP, “XML is key to defining
what a Web services interaction should
be. It’s best suited for the role of serving
as the language for describing the data
that needs to be exchanged between
applications.”

Gary Brunell, VP of professional
services for Parasoft, pointed out that
“If we’re going to use the term ‘Web
services,’ it does suggest the Web, and
so HTTP and HTTPS. XML is very
important too,” he added.

Meantime, David White of Microsoft
said he disagreed with the “Web” part
of the term “Web services.” “I’m a big
believer in transport agnosticism,”
White said. “I’m really more concerned
about the data representation and the
invocation, rather than the transport.
The key is to get something back and
forth without great expense.”

Chappell agreed: “To me the ‘servic-
es’ word is the more important, the
service-oriented architecture part.
‘Web services’ is now a more generic
term, for ‘the next thing that’s going to
solve the problems we’re trying to
solve.’”

Next the panel moved on to pin-
point whether Web services has yet
become common beyond the firewall,
or is still mostly being used for intra-
company use.

Chappell noted that in his experi-
ence there is about an 80:20 divide in
terms of adoption. “80% is within the
corporation’s control, and 20%
involves the public Internet (the Web)
– dealing with other business part-
ners, for example.” Brunell agreed that
mission-critical apps were still “few
and far between,” adding, “That’s why
we are all coming to these confer-
ences.”

Microsoft’s White noted that on the
contrary he had seen mission-critical
things happen inside Web services.
“We’ve only just gotten there,” he said,
“but I have absolutely seen mission-
critical Web services in our customer
mass.” Not out in the B2B space, he
conceded.

JBoss Group’s CTO, Scott Stark, pin-
pointed one crucial piece of the jigsaw
that’s still missing: “Single Sign-On is a
joke, I have about 35 accounts; no one
has an agreement yet on a one-stop
solution, and no enterprise technology
can surmount that. J2EE is still basical-
ly a middleware technology,” Stark con-
tinued, “it’s not out there bridging
enterprises.”

The bridging role, then, remains
perfect for Web services. But these
things take time, Stark added.
“Developers are going to have to get

comfortable with Web services first:
J2EE has taken 7 years to become a rea-
sonably accepted technology.” He
pointed out that XML wasn’t without its
shortcomings. “XML is a double-edged
sword. My head starts spinning after
I’ve read the 10 different XML Schemas.
So the usual technology curve also
impedes the adoption of Web services.
But that’s just the nature of the beast.”

Asked if XML might be replaced,
White explained that one of the prob-
lems is that good tools are often the last
thing to appear after a “technology
burst” such as the one we are seeing
around Web services. “I’m not a seer,”
White said, but the key to widespread
adoption of any new technology is
completion of the specs (we’re there),
demos (we’re getting there), and then
the tools (they’re coming).”

JBoss’s Stark agreed. “XML isn’t
going anywhere. Before there was IIOP
and it went nowhere. Clearly XML is the
only technology, however complex it
might be, that’s tried to address the
problem. Besides, IIOP was even more
complicated, and writing, say, a TCP/IP
stack, is not a productive endeavor.”

Stark then minted the phrase of the
conference. “People have more comfort
now with distributed programming; it’s
a tool for the times.”

““DDoo tthhiinnkk ooff tthhee ‘‘WW’’ iinn WWeebb sseerrvviiccee aass aa wwaayy
ttoo aasskk ‘‘WWhhyy nnoott??’’ wwhheenn pprreesseenntteedd wwiitthh tthhee

difficulties or challenges of opening up a
system or sharing information across

departmental systems?”
––VVeellaann TThhiillllaaiirraajjaahh

EAI Technologies
Founding Member of the EAI Industry Consortium

60 November 2003 www.JavaDevelopersJournal.com

STMicroelectronics/Kudelski Group
to Provide 3G Java SIM/USIM
Card Solution
(Geneva / Cheseaux, Switzerland) –
STMicroelectronics and the Kudelski
Group have announced the signature of
a framework development and license
agreement to provide a 3G Secure
JavaCard system solution. This system
solution consists of a background com-
patible 3G SIM/USIM card with a design
that enables telecom operators as well as
third-party application providers to
design and deploy new mobile services
with the utmost security features.

The jointly developed solution repre-
sents an open and standard-compliant
card in the telecom market and will be
deployed in the first half of 2004.
www.st.com
www.nagra.com

esmertec Brings to Market
MIDP2.0 TRUE BREW-Tested and
Java-Certified Solution
(Geneva) – esmertec has announced the
availability of a market-ready MIDP2.0
TRUE BREW-tested and Java-certified
solution. The Java Virtual Machine
(JVM) solution enables Java applica-
tions to be deployed like any other
application that’s offered via
QUALCOMM’s BREW system. The solu-
tion successfully passed the TRUE
BREW and J2ME CLDC MIDP2.0 com-
patibility testing, thus the implementa-
tion complies with both standard plat-
form requirements and is now available
for wireless operators.
www.esmertec.com

WebMethods to Acquire
The Mind Electric
(Fairfax, VA / Dallas) –
WebMethods, Inc., has

announced that it will
acquire The Mind
Electric (TME) and its
flagship GLUE soft-
ware, a Java-based
platform for building
Web services.

WebMethods, a
maker of software-
integration technolo-

gy, also said that
Graham Glass, the founder,
chairman, and chief architect
of Dallas-based TME, will

now serve as WebMethods’ chief tech-
nology officer.
www.webmethods.com

Actuate Integrates e.Report Engine
with BEA WebLogic Workshop 8.1
(South San Francisco) – Actuate
Corporation, a provider of scalable busi-
ness intelligence applications, has
announced the Formula One e.Report
Engine for WebLogic Workshop, a new
product developed by the Reporting-
Engines division of Actuate Corporation,
an embedded reporting solution for the
J2EE platform. The e.Report Engine for
WebLogic Workshop offers BEA develop-
ers a fully integrated Java reporting
toolset that can be used as a part of
every project to design, preview, com-
pile, and deploy reports for any applica-
tion without leaving the BEA WebLogic
Workshop environment.
www.reportingengines.com

Parasoft Releases Jtest 5.0
(Monrovia, CA) – Parasoft, a provider of
Automated Error Prevention software
solutions, has announced the general
availability of Jtest 5.0, a development
product that automates all aspects of Java
unit testing and coding standards com-
pliance. This latest version is equipped
with new JUnit test generation capabili-
ties, automated code correction capabili-
ties, and other features designed to sim-
plify team-wide Java error prevention.
www.parasoft.com

Industry News
PRESSROOM

J2
SE

H
O

M
E

J2
E

E
J2

M
E

javac -J-Xbootclasspath/p:JSR14HOME\gjc-

rt.jar -bootclasspath JSR14HOME

\collect.jar;JDK141HOME\jre\lib\rt.jar -

source 1.5 -d classes - classpath classes

FileName.java

The Java command contains similarly
obscure arguments. The command I
used in running the generic examples
is:
java -Xbootclasspath/p:JSR14HOME\gjc-rt.jar -

cp classes FileName

If you’re developing on a Unix plat-
form, a make file provided in the JSR 14
download should help you on your way.
You can find it in the examples directory
in JSR14HOME.

Conclusion
Changes to the core syntax of Java are

rare because of the momentum behind
Java. You can’t change anything without the
risk of affecting millions of lines of code.
The generics addition to Java is a welcome
one, even with that risk. After years of
debating if generics was a good idea and
evolving generics compilers, Sun will be
sending generics out with Tiger in JDK 1.5.
This is a great change because these
“generics” or “parameterized types” allow
you to create more flexible classes that are
still types supported by the compiler.

Generics also solve one of the
biggest annoyances in Java code: the
constant type-checking with instance-
of followed by type-casting. The com-
piler will catch many of the errors that
would have generated ClassCast-
Exceptions at runtime. This will make

code more readable and type safer.
The addition of generics is a signifi-

cant change. Although Java has gone
through many versions, none has added
as much syntax change as generics,
except maybe inner classes. Maybe it’s
time to move the major version up one
and announce JDK 2.0?

References
• “Preparing for Generics”: http:// devel-

oper.java.sun.com/developer/
technicalArticles/releases/generics/

• JSR 14 Home: http://jcp.org/en/jsr/
detail?id=14

• Early access release: http://developer.
java.sun.com/developer/earlyAccess/
adding_generics/index.html

• “JDK 1.5 Preview: Addition of Generics
Improves Type Checking”: www.devx.
com/Java/Article/16024

(San Jose, CA) – BEA Systems, Inc., has
announced that it is addressing a major IT
challenge for enterprises with BEA WebLogic
Enterprise Security – an application security
infrastructure solution. It provides a compre-
hensive, easy-to-manage, single-security
architecture that covers most security servic-
es such as authentication, authoriza-
tion, identity assertion, role and cre-
dential mapping, and auditing. The
software aims to provide a single
point of authentication for enterprise applications. www.bea.com

BEA Offers Up New Enterprise Security Architecture

–continued from page 37
Using
Java Generics

Kirk Pepperdine is the chief techni-
cal officer at Java Performance

Tuning.com and has been focused
on object technologies and per-
formance tuning for the last 15
years. Kirk is a co-author of Ant
Developer’s Handbook (Sams).

kirk@javaperformancetuning.com

62 November 2003 www.JavaDevelopersJournal.com

he JRockit engineers made two assump-
tions when they first designed JRockit.
First, server VMs run for a long time
and, second, memory is cheap and
plentiful. This motto still rings true in
BEA’s offering of the 8.1 (J2SE 1.4.1_03)
version of this product. And, unlike the
more familiar JVMs, this VM comes with
a face.

Acquiring and Installing JRockit
JRockit runs on the MS Windows

and Red Hat Linux platforms and is
available in a 25MB download. The
install was as uneventful as all installs
should be. As expected, the directory
structure followed the standard
JDK/JRE structure. There were some
differences in the content, but all of the
standard tools were present. What is
missing are the familiar Javadoc and
Java source JAR. Not having the Javadoc
was not an issue as it’s the same one
that’s provided by the JDK and the
quantity of online documentation is
overwhelming. In addition to ample
information on how to tune the JVM, it
included a guide that described how to
extract the JRE from the distribution.

Using JRockit
The two tools that I use on a regular

basis are IntelliJ IDEA and Ant.
Configuring IntelliJ to use JRockit
required only a few mouse clicks. The
following code shows how to set the JVM
attribute so that Ant will use JRockit.
Unfortunately, the Javac task has no
such attribute and JRockit is not in the
list of available compilers. The easiest
way around this limitation is to use the
exec task to invoke the compiler.

<target name="listener">

<java classname="com.jpt.bench-

marks.jrockit.EchoServer"

jvm="${JRockit.home}/bin/java" fork="yes">

<classpath>

<pathelement

location="classes"/>

</classpath>

</java>

</target>

JRockit supports all the standard VM
options and a number of the more
“standard” nonstandard –X options
(such as heap size and heap max size).

JRockit Features
The reason for using this VM is its

feature set. Curiously enough, one of
the most interesting features is that
the VM lacks an interpreter. As a
result, the VM must JIT every method
that it encounters. This does result in
longer start-up times and the VM will
consume more memory. The upside is
that once started, your server will run
at speeds that are comparable to a
natively compiled executable. HotSpot
will still aggressively compile the well-
trafficked portion of your application.

Other features of the VM include
four garbage collectors, thread local
object allocation, thin threads, and a
rich set of verbose printing options.
The garbage collectors include a gen-
erational stop and copy single-spaced
concurrent, generational concurrent,
parallel, and single-spaced stop the
world. It’s the latter two GC algo-
rithms that are recommended for pro-
duction systems. Included in the doc-
umentation is a very useful discussion
on how to choose between them.

By default, each thread is allocated its
own private space in the heap, and objects
are in this space. While this feature will
result in your application consuming
more memory, it eliminates the need to
synchronize on a global heap. If memory
does become an issue, you can configure
the VM to allocate on the global heap.

The verbose printing of information
includes memory system, garbage collec-
tion, class loading, code generation, CPU,
and code optimizations. Normally, I
would spend some time on the usefulness
of this type of information, but that dis-
cussion is cut short in favor of the unique
set of management and monitoring capa-
bilities that are included with this VM.

Managing and Monitoring
the JRockit JVM

The current set of management and
monitoring APIs in the JRockit JVM are pro-

prietary. Having said this, they are actively
involved with the JSR-174 expert group,
busily defining a set of specifications for
APIs to manage and monitor a JVM. You
have to believe that JRockit’s still maturing
management console is a demonstration of
the future of VM technology.

As is the case with the JPDA, the JVM
must be started with the monitoring
turned on. As can be seen in Table 1, the
associated overhead is barely noticeable
until the console manager is attached.
Once attached, the console did con-
sume more cycles than was expected in
this test, though in others, the resource
consumption was much lower.

No monitoring 100%
Monitoring turned on 99.5%
Console manager attached 91.4%
Table 1 Echo Server running in JRockit (sustained TPS)

The good news is, with this VM we
can afford to turn on monitoring in pro-
duction and attach a console when the
need arises. The console displays cur-
rent readings on CPU, memory, heap,
and garbage collection. Figure 1 is a
complete summary of heap, memory
utilization, and GC statistics. The main
panel includes a CPU utilization gauge.

In addition to these statistics, the
console supports the notification
framework, which listens on aspects
and triggers rules whenever the speci-
fied set of conditions is met. A rule con-
sists of a trigger and an action. The trig-
ger defines the conditions that must be
met before the action will be executed.
The action is simply what needs to be
done when the trigger fires. The notifi-
cation framework offers a nice point of
extensibility. Developers are free to
define their own triggers and actions.

WebLogic
JRockit 8.1
by BEA Systems

T

LABS

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Reviewed by
Kirk Pepperdine

2315 North First Street
San Jose, CA 95131
PPhhoonnee:: 800.817.4232
WWeebb:: www.bea.com

PPllaattffoorrmmss:: Window NT/2000/XP,
Red Hat Linux

Compaq Armada M700, 850 MHz Intel Pentium III
processor, 20GB disk, 576 MB RAM, Windows
2000 service pack 3

BEA Systems, Inc.

Specifications

Test Platform

63November 2003www.JavaDevelopersJournal.com

Attaching a JRockit Runtime Analyzer
recorder to the VM allows you to collect
runtime information that can be ana-
lyzed at a later time. In addition to heap
and GC statistics, the recorder captures
method optimizations and the execution
profile. An example of the detailed GC
statistics can be seen in Figure 2.

While the ability to monitor was
limited to a few statistics, there was a
good level of detail on heap and mem-
ory utilization. One capability that I’ve
used in other tools that was missing
from this analysis tool was the ability to
overlay and manipulate graphs. This
feature is very useful when you’re
attempting to correlate events. As basic
as the presentation was, it did offer a
lot of data that is otherwise very diffi-
cult (if not impossible) to obtain.

Conclusion
With all the emphasis on perform-

ance, it’s not surprising that this VM
consistently obtains the best results in
the SPECjjb2000 benchmarks. It is this
drive for performance that has motivat-
ed the JRockit engineers to build tools
to monitor and manage the VM. And
now, these tools are providing us all
with insight into the future of how VMs
will be monitored and managed.
Though the current console is more

about monitoring than managing, the
future will include such capabilities as
being able to alter the choice of GC to
altering the size of the nursery.

In creating a server-centric VM, the
engineers at JRockit have purposely traded
memory for performance, which is a wise
choice in this reviewer’s humble opinion.

References
• http://e-docs.bea.com/

wljrockit/docs81/
• www.bea.com/framework.jsp?

CNT=index.htm&FP=/content/prod
ucts/jrockit/

• www.spec.org/jbb2000/results
/res2003q3/

TTaarrggeett AAuuddiieennccee:: Developers, system administra-
tors, project managers
LLeevveell:: Intermediate
PPrrooss::
• Certified J2SE 1.4 compatible
• High-performance, server-oriented VM
• Integrated monitoring system
• Well-documented feature set
• Highly configurable
CCoonnss::
• Consumes more memory than a traditional VM
• Slower startup

Snapshot

Figure 1 The memory panel

Figure 2 Heap statistics

64 November 2003 www.JavaDevelopersJournal.com

elcome to the November edition of the
JCP column! Each month you can read
about the Java Community Process:
newly submitted JSRs, new draft specs,
Java APIs that were finalized, and other
news from the JCP. For November I’ll be
covering a handful of new JSRs, several
final JSRs including one rather long-
running one that has now reached the
finish line, a plug for ApacheCon, and a
report on the first phase of this year’s
EC elections.

New JSRs
Since the writing of last month’s col-

umn, four new JSRs were submitted by
JCP members. The first new JSR of this
year was number 203, and the JSR
count is now at 232; thus the communi-
ty keeps running like clockwork and is
on schedule to again hit the average of
40 to 45 new JSRs per year.

This month Siemens has submitted
two JSRs. JSR 229, Payment API for
J2ME environment, will be developing
an API to initiate payment transac-
tions and methods to allow service
providers to support different pay-
ment instruments. JSR 182 focuses on
payment interactions with Web-based
services. As such, it can be viewed as a
payment instrument implementation
for which JSR 229 would provide the
framework. JSR 230, Data Sync API,
proposes to provide a mechanism for
J2ME applications to synchronize data
stored on the device with data stored
on a server. The JSR aims to develop a
high-level API that can plug into a
number of underlying synchronization
protocols such as SyncML. Also for
J2ME technology, Nokia and Motorola
have submitted JSR 232, Mobile
Operational Management. The pro-
posal is to provide functionality that
allows devices based on CLDC and
MIDP 2.0 to install and remove com-
ponents on demand. This gives devel-
opers the opportunity to create appli-

cations as interoperable and shareable
components; it also creates opportuni-
ties for providers, manufacturers, and
others when these components can be
deployed aftermarket and across a
wide range of devices.

New in the J2SE environment is
Sun’s JSR, JSR 231, Java Bindings for
OpenGL. The proposal describes the
development of Java bindings to the
native 3D graphics library, including all
core GL calls and the GLU library. This
provides the Java developer with access
to hardware-accelerated 3D graphics in
a portable and open standard way. It
will be delivered as an optional package
on top of the J2SE platform.

Final JSRs
There are three final JSRs that I want

to cover here. To start off, JSR 97,
JavaHelp API, is one that I am quite
fond of. While it took some time for this
JSR to finish, it delivers functionality
that is especially useful to tool vendors
and developers of complex desktop
applications in general. It’s a rich help
system aimed at both developers and
authors. It’s also a nice example of the
Java Foundation Classes technology.
Also for the J2SE environment, JSR 160,
JMX Remote API, has successfully com-
pleted. This JSR adds client-side APIs
for a so-called Java Manager to discover
and access JMX-based agents. This
complements JSR 3, which provided
the API for management agents and
services.

On the J2EE technology side, JSR
124 went final. The J2EE Client
Provisioning Specification allows a J2EE
server to discover suitable client appli-
cations available for delivery, to moni-
tor the delivery of a client application,
and to separate the provisioning of var-
ious client applications from each
other. The API supports several client
platforms such as J2ME MIDP and Java
Web Start–enabled applications.

Upcoming Birthday Party
The JCP was launched in December

1998, so in one month it’s the commu-
nity’s 5th birthday. To celebrate, the JCP
Program Office will be at ApacheCon
US 2003 in Las Vegas from November
16–19. The JCP is sponsoring the event
and putting together a few activities at
the conference to call attention to this
milestone. I invite you to come along
and discuss with me how the JCP has
evolved since December ’98 and what
directions it can/should take in the
next five years.

The Elections
On October 14 the first phase of the

EC elections were completed – the rati-
fication vote by the JCP membership
on the nominations by Sun. For the ME
EC, Matsushita, Motorola, Siemens,
and Vodafone were ratified. For the
SE/EE EC, Fujitsu, HP, IBM, and Oracle
were ratified. Congratulations to these
members and, in addition, a welcome
to Vodafone to the ME EC. The voting
for the second phase of the elections
starts on November 1. These are the
self-nominated seats. For each EC
there are two seats up for reelection.
For ME EC these are BEA (term
expired) and Zucotto Wireless (out of
business); for SE/EE EC these are Doug
Lea (term expired) and Cisco (with-
drawing from the EC). There is no limit
to the number of terms a JCP member
can serve on the EC, so I expect that
both BEA and Doug Lea will run for
reelection. You can find out more
about the elections at
PriceWaterhouseCoopers’ Web site at
http://jcpelection2003.org.

• • •
That’s it for this month. I’m very

interested in your feedback. Please e-
mail me with your comments, ques-
tions, and suggestions.

From Within the
Java Community Process Program
From new JSRs to final APIs

W

JSR WATCH

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Onno Kluyt

Onno Kluyt is the
director of the

JCP Program
Management Office,

Sun Microsystems.

onno@jcp.org

65November 2003www.JavaDevelopersJournal.com

It’s the Aspects
Aspect-Oriented Programming (AOP) is

a promising new paradigm that came out
of Xerox PARC a few years ago and is just
now becoming mature and mainstream. As
a natural complement to object-oriented
programming, it has the potential to ease
the management of complex systems and
make their organization much more intu-
itive, extendable, and flexible.

Building a Connected MIDlet
One of the most powerful aspects of

J2ME is connected mobility: you’re no
longer tied to your desk to accomplish
many vital tasks. You can carry everything
you need in your pocket, send an e-mail
while standing in line in the grocery store,
or check the latest stock figures while at a
baseball game. This article will show you
how to build an Internet-enabled mobile
application and illustrate the considera-
tions that must be taken into account dur-
ing design and development.

IntelliJ IDEA 3.0 by JetBrains, Inc.
The integrated development environ-

ment (IDE) makes up a large part of the
tools in the toolkit of a modern software
developer. Java projects have a complex
development process, especially if the proj-
ect is to be developed using open source
and J2EE technologies. A smart and efficient
IDE plays an important role in making
developers more efficient and productive in
doing their tasks and meeting project dead-
lines. This review will discuss one such
smart IDE – IDEA 3.0.

Teamstudio Analyzer for Java
What is every Java developer’s night-

mare? Maintaining code, even if he or she
has written it. Code is often chaotic and
incomprehensible, mostly due to nonuni-
form coding styles. For decades, premier
software vendors realized that uniformity in
projects cannot be assured without addi-
tional inspections during development.
Teamstudio is one of these software ven-
dors. Teamstudio Analyzer for Java automat-
ically inspects your code and provides con-
trol over a uniform coding style within your
projects.

FPO

Advertiser Index

GGeenneerraall CCoonnddiittiioonnss:: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of JJaavvaa DDeevveellooppeerr’’ss JJoouurrnnaall. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher
fails to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess of
the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The
Advertiser is fully responsible for all financial liability and terms of the contract executed by the agents or agen-
cies who are acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject to
change by the Publisher without notice. No conditions other than those set forth in this “General Conditions
Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the con-
tent of their advertisements printed in JJaavvaa DDeevveellooppeerr’’ss JJoouurrnnaall. Advertisements are to be printed at the discre-
tion of the Publisher. This discretion includes the positioning of the advertisement, except for “preferred posi-
tions” described in the rate table. Cancellations and changes to advertisements must be made in writing before
the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

Altova www.altova.com/upgrade 25

Apple Computer 4-5

BEA Systems dev2dev.bea.com/cerebrum 34-35

Borland Software Corporation go.borland.com/j6 11

Canoo Engineering AG www.canoo.com/ulc/ 13

Computer Associates ca.com/lifecycle 6

Compuware www.offers.compuware.com 1-800- COMPUWARE20-21

Crystal Decisions www.crystaldecisions.com/lbl/ 1-800-877-2340 9

GreenPoint, Inc. www.webcharts3d.com/demo 63

Edge East 2004 www.sys-con.com 201-802-3069 53

Exadel www.exadel.com 51

IBM Rational ibm.com/rational/seamless 19

ILOG jviews-info-kit.ilog.com 1-800-for-ILOG 27

InetSoft Technology Corp. www.inetsoft.com/jdj 888-216-2353 33

Infragistics, Inc. www.infragistics.com 800-231-8588 14-15

iSavix http://isavix.net 703-689-3190 41

Mercury Interactive www.mercuryinteractive.com/optimizej2ee Cover II

Northwoods Software Corp. www.nwoods.com/go 800-434-9820 40

Oak Grove Systems www.oakgrovesystems.com/jdj 818-440-1234 31

Parasoft Corporation www.parasoft.com/jdj11 888-305-0041 23

Quest Software, Inc. http://java.quest.com/jprobe/jdj 17

Quest Software, Inc. http://java.quest.com/performasure/jdj 45

Quest Software, Inc. http://java.quest.com/jclass/jdj Cover IV

ReportingEngines www.reportingengines.com/info/trial7.jsp 888-884-8665 37

Software FX www.softwarefx.com 800-392-4278 Cover III

WebAppCabaret www.webappcabaret.com/jdj.jsp 47

Zero G www.zerog.com 415-512-7771 3, 39, 49, 61

Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

Next Month
Service-oriented architectures (SOA) have numerous benefits: reuse of busi-

ness logic by many clients, location transparency of business logic, simplified
unit testing, better scalability through distributed and load-balanced process-
ing, and composition of new services from existing services. As many new SOA
applications are now developed on the J2EE platform, a problem arises: how to
maintain 100% availability while deploying maintenance fixes and new ver-
sions of the services.

Non-Stop EJB Services

66 November 2003 www.JavaDevelopersJournal.com

any of the problems related to software
development are at the individual level,
with those who create bad code rather
than with any specific technology issue.
Therefore the goal of anyone staffing a
project is to attract employees most
likely to ensure success. The infamous
1968 study by Sackman, Erikson, and
Grant, “Exploratory experimental stud-
ies comparing online and offline pro-
gramming performance,” concluded
that productivity variation between
good and bad developers was a factor of
10. The test was based on how quickly
their subjects could write a program to
solve a maze algorithm, and implicit in
this was the assumption that the coders
who solved it fastest were superior. It’s
not an illogical conclusion to make.
Most computer science faculties do the
same when they grade students based
on their ability to write sort routines or
their intimate knowledge of Knuth’s
programming fundamentals.

Frederick P. Brooks in The Mythical
Man-Month writes, “The hard part of
building software is the specification,
design, and testing of the conceptual con-
struct, not the labor of representing it.” In
other words, it’s the thought process that
is essential to success, rather than coding
horsepower. If the act of programming is
more aligned to a creative process than to
one requiring a traditional engineering
discipline, why is this not encouraged and
recognized more? The most successful
teams I’ve worked on are usually com-
posed of well-rounded individuals who
aren’t chasing the latest technology fad to

pump up their résumé. These people
have both feet firmly on the ground. They
stay focused on delivering sensible solu-
tions to the immediate problems.

Writing good software involves forego-
ing gratuitous complexity, concentrating
rather on such concepts as reuse, main-
tainability, and reliability. Often those
most qualified for this aren’t professional
computer scientists but instead graduates
of other disciplines who, instead of focus-
ing on being one-person programming
machines, have developed their analyti-
cal, creative, and communication skills
while at college. It’s hard to formalize
what traits good programmers need, but I
think people interested in subjects out-
side of computing, the musically minded
for instance, make the best coders.

Mathematics disciplines are often
separated into pure and applied: num-
ber theory versus building a bridge that
won’t fall down. Perhaps computer sci-
ence needs the same, so that future gen-
erations of programmers will be more
grounded in the practicalities of building
and maintaining application code. The
two most important movements in soft-
ware of recent years – design patterns
and extreme programming – were not
born out of any academic research insti-
tute but instead came from experienced
developers looking for ways to improve
the production process.

In “Hackers and Painters”, Paul
Graham draws parallels between a pro-
grammer and an artist. The artist doesn’t
need to know the chemistry of paint, but
instead is responsible for knowing how

to mix and match colors to create the
finished canvas. The best coders likewise
are not immersed in esoteric computing
theory, but have a picture of the finished
product in their minds and understand
the techniques required and the tools
available to arrive at completion.

In terms of degree results and employ-
ment placements, the safe route for col-
lege computer science departments is to
recruit mathematically minded students.
These can be drilled with little effort, or
thought, frankly, into the next generation
of speed coders. Each year they collect
their degrees only to join business IT
departments or software companies.
Computer science was born out of a mar-
riage of mathematics and engineering,
but surely it’s time for the faculty to take a
step away from academic roots and try to
attract and nurture the more practical
side of programming. Universities must
attract creative individuals as the next
generation of programmers, and dispel
the myth that successful software devel-
opment is a sport practiced by mathmo
nerds. Instead it’s more akin to poetry for
machines, with computer language syn-
tax being the artist’s medium.

References
• Sackman, Erikson, and Grant:

http://portal.acm.org/citation.cfm?i
d=362858&coll=portal&dl=ACM&CFI
D=13007643&CFTOKEN=14286366

• The Mythical Man-Month: www.aw-
bc.com

• Hackers and Painters: www.paulgra-
ham.com/hp.html

Software Development:
Science or Art?

M

FROM THE INSIDE

J2
SE

H
O

M
E

J2
E

E
J2

M
E

Ja
va

 D
ud

es

Henry Roswell is a
veteran consultant
who would like to
think he’s seen it

all, but is constantly
amazed by new

events everyday.

henry@sys-con.com

Henry Roswell

Evaluate and experience JClass today — visit:

http://java.quest.com/jclass/jdj

JClass¤

Rich client user interface and utility

components.Server-side web client

interface and reporting components.

W hatever type of Java development

you’re doing,JClass can help.

JClass ServerViews

Add professional content to your

Servlet,JSP or J2EE applications.

Generate interactive charts with

JClass ServerChart and dynamic

PDF reports with JClass

ServerReport.Now fully XML

and W eb Services ready!

JClass DesktopViews

Essential components for

client-side Java applications and

applets: 2D/3D charts,tables/grids,

data-entry fields,database access

and much more.

The only Java components you need
for J2EE or Swing development

' 2003 Quest Software, Inc. Quest and JClass are trademarks or registered trademarks of Quest Software, Inc. Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States

and other countries. All other products are trademarks or registered trademarks of their respective companies.

